題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)
。
(1)證明:![]()
(2)若數(shù)列
的通項(xiàng)公式為
,求數(shù)列
的前
項(xiàng)和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)設(shè)數(shù)列
滿足:
,設(shè)
,
若(2)中的
滿足對任意不小于2的正整數(shù)
,
恒成立,
試求
的最大值。
(本小題滿分14分)已知
,點(diǎn)
在
軸上,點(diǎn)
在
軸的正半軸,點(diǎn)
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)當(dāng)點(diǎn)
在
軸上移動時(shí),求動點(diǎn)
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)![]()
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知
,其中
是自然常數(shù),![]()
(1)討論
時(shí),
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求證:在(1)的條件下,
;
(3)是否存在實(shí)數(shù)
,使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列
的前
項(xiàng)和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列
的通項(xiàng)公式;
(II)記
,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對任意正整數(shù)
都有
;
(III)設(shè)數(shù)列
的前
項(xiàng)和為
。已知正實(shí)數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
一、 選擇題(本大題共12小題,每小題5分,共60分)
CDAB CDAB ABBA
二、填空題:(本大題共4小題,每小題4分,共16分)
13、
14、
15、
16、
三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。
17、解、由題
得
,則

0



2


0


遞增
極大值
遞減
當(dāng)
時(shí),
;當(dāng)
時(shí),
;當(dāng)
時(shí),
所以,當(dāng)
時(shí),
;當(dāng)
時(shí),
18、解、(1)設(shè)甲投球一次命中為事件A,
;設(shè)乙投球一次命中為事件B,
則甲、乙兩人在罰球線各投球一次,恰好命中一次的概率

答:甲、乙兩人在罰球線各投球一次,恰好命中一次的概率為
。
(2)甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的對立面是這四次投球中無一次命中,
所以甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的的概率是

答:甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的的概率是
。
19、解、(1)
中,


(2)以
分別為
軸,如圖建立直角坐標(biāo)系,設(shè)
則


所以
與平面
所成的角為
。
20、解:(1)∵
依題意得
∴
(2)設(shè)第r +1項(xiàng)含x3項(xiàng),
則
∴第二項(xiàng)為含x3的項(xiàng):T2=-2
=-18x3
21、解、(1)設(shè)
,若
得
,又
,所以
得
,而
,所以無解。即直線
與直線
不可能垂直。
(2)

所以
的范圍是
。
22、(Ⅰ)解:當(dāng)
時(shí),
,得
,且
,
.
所以,曲線
在點(diǎn)
處的切線方程是
,整理得
.。
(Ⅱ)解:
.
令
,解得
或
.
由于
,以下分兩種情況討論.
(1)若
,當(dāng)
變化時(shí),
的正負(fù)如下表:












因此,函數(shù)
在
處取得極小值
,且
;
函數(shù)
在
處取得極大值
,且
.
(2)若
,當(dāng)
變化時(shí),
的正負(fù)如下表:












因此,函數(shù)
在
處取得極小值
,且
;
函數(shù)
在
處取得極大值
,且
.
(Ⅲ)證明:由
,得
,當(dāng)
時(shí),
,
.
由(Ⅱ)知,
在
上是減函數(shù),要使
,
只要
即
、
設(shè)
,則函數(shù)
在
上的最大值為
.
要使①式恒成立,必須
,即
或
.
所以,在區(qū)間
上存在
,使得
對任意的
恒成立.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com