題目列表(包括答案和解析)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點(diǎn),
,
是線段
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接
,則點(diǎn)
、
,
![]()
∴
,又點(diǎn)
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
. (本小題滿分9分)
(如圖)在底面為平行四邊形的四棱錐
中,
,
平面
,且
,點(diǎn)
是
的中點(diǎn).![]()
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(Ⅲ)(理科學(xué)生做)求二面角
的大小.
(文科學(xué)生做)當(dāng)
,
時,求直線
和平面
所成的線面角的大小.
(幾何證明選做題) 如圖,過點(diǎn)
作圓
的割線
與切線
,
為切點(diǎn),連接
,
的平分線與
分別交于點(diǎn)
,若
,則
;
![]()
命題(2)的逆命題是:如果兩條平行直線中的一條垂直于一個平面,那么另一條也_________這個平面.用數(shù)學(xué)符號表示:已知a_____b,a_______平面α,求證:b______α.?
證明:設(shè)m是α內(nèi)的任意一條直線.∵a________α,m
α,?
?∴a________m.又∵a_______b,∴________bm.又∵m
α,m是_______,∴由線面垂直的__________可知b______α.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com