題目列表(包括答案和解析)
現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記
,求隨機變量
的分布列與數(shù)學期望
.
【解析】依題意,這4個人中,每個人去參加甲游戲的概率為
,去參加乙游戲的概率為
.
設“這4個人中恰有i人去參加甲游戲”為事件![]()
![]()
則
.
(1)這4個人中恰有2人去參加甲游戲的概率![]()
(2)設“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則
.由于
互斥,故![]()
所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為
.
(3)
的所有可能取值為0,2,4.由于
互斥,
互斥,故![]()
![]()
所以
的分布列是
|
|
0 |
2 |
4 |
|
P |
|
|
|
隨機變量
的數(shù)學期望
.
設橢圓
的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設點P的坐標為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設點P的坐標為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設點P的坐標為
.
由P在橢圓上,有![]()
因為
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com