題目列表(包括答案和解析)
某中學(xué)高一年級(jí)美術(shù)學(xué)科開(kāi)設(shè)書(shū)法、繪畫(huà)、雕塑三門(mén)校本選修課,學(xué)生可選也可不選,學(xué)生是否選修哪門(mén)課互不影響.已知某學(xué)生只選修書(shū)法的概率為0.08,只選修書(shū)法和繪畫(huà)的概率是0.12,至少選修一門(mén)的概率是0.88.
(1)依題意分別計(jì)算該學(xué)生選修書(shū)法、繪畫(huà)、雕塑三門(mén)校本選修課的概率;
(2)用ξ表示該學(xué)生選修的課程門(mén)數(shù)和沒(méi)有選修的課程門(mén)數(shù)的乘積,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
某中學(xué)高一年級(jí)美術(shù)學(xué)科開(kāi)設(shè)書(shū)法、繪畫(huà)、雕塑三門(mén)校本選修課,學(xué)生可選也可不選,學(xué)生是否選修哪門(mén)課互不影響.已知某學(xué)生只選修書(shū)法的概率為0.08,只選修書(shū)法和繪畫(huà)的概率是0.12,至少選修一門(mén)的概率是0.88.
(1)依題意分別計(jì)算該學(xué)生選修書(shū)法、繪畫(huà)、雕塑三門(mén)校本選修課的概率;
(2)用a表示該學(xué)生選修的課程門(mén)數(shù)和沒(méi)有選修的課程門(mén)數(shù)的乘積,記“f(x)=x2+ax為R上的偶函數(shù)”為事件A,求事件A發(fā)生的概率.
一自來(lái)水廠(chǎng)用蓄水池通過(guò)管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠(chǎng)計(jì)劃在當(dāng)日每小時(shí)向蓄水池注入水2千噸,且每
小時(shí)通過(guò)管道向所管轄區(qū)域供水
千噸.
(1)多少小時(shí)后,蓄水池存水量最少?
(2)當(dāng)蓄水池存水量少于3千噸時(shí),供水就會(huì)出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時(shí)間有多長(zhǎng)?
【解析】第一問(wèn)中(1)設(shè)
小時(shí)后,蓄水池有水
千噸.依題意,
當(dāng)
,即
(小時(shí))時(shí),蓄水池的水量最少,只有1千噸
第二問(wèn)依題意,
解得:![]()
解:(1)設(shè)
小時(shí)后,蓄水池有水
千噸.………………………………………1分
依題意,
…………………………………………4分
當(dāng)
,即
(小時(shí))時(shí),蓄水池的水量最少,只有1千噸. ………2分
(2)依題意,
………………………………………………3分
解得:
. …………………………………………………………………3分
所以,當(dāng)天有8小時(shí)會(huì)出現(xiàn)供水緊張的情況
設(shè)函數(shù)f(x)=
在[1,+∞
上為增函數(shù).
(1)求正實(shí)數(shù)a的取值范圍;
(2)比較
的大小,說(shuō)明理由;
(3)求證:
(n∈N*, n≥2)
【解析】第一問(wèn)中,利用
解:(1)由已知:
,依題意得:
≥0對(duì)x∈[1,+∞
恒成立
∴ax-1≥0對(duì)x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上為增函數(shù),
∴n≥2時(shí):f(
)=
(3) ∵
∴![]()
D
[解析] 依題意得0<a<1,于是由f(1-
)>1得loga(1-
)>logaa,0<1-
<a,由此解得1<x<
,因此不等式f(1-
)>1的解集是(1,
),選D.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com