題目列表(包括答案和解析)
(本題滿分13分)設(shè)函數(shù)![]()
滿足:
都有
,且
時,
取極小值![]()
(1)
的解析式;
(2)當(dāng)
時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直;
(3)設(shè)
, 當(dāng)
時,求函數(shù)
的最小值,并指出當(dāng)
取最小值時相應(yīng)的
值.
(本題滿分13分)設(shè)函數(shù)![]()
滿足:
都有
,且
時,
取極小值![]()
(1)
的解析式;
(2)當(dāng)
時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直;
(3)設(shè)
, 當(dāng)
時,求函數(shù)
的最小值,并指出當(dāng)
取最小值時相應(yīng)的
值.
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當(dāng)直線過右焦點
時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線
經(jīng)過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設(shè)
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設(shè)M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
在
中,滿足
,
是
邊上的一點.
(Ⅰ)若
,求向量
與向量
夾角的正弦值;
(Ⅱ)若
,
=m (m為正常數(shù)) 且
是
邊上的三等分點.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求
第二問因為
,
=m所以
,![]()
(1)當(dāng)
時,則
=
(2)當(dāng)
時,則
=![]()
第三問中,解:設(shè)
,因為![]()
,
;
所以
即
于是
得![]()
從而![]()
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為
,
=m所以
,![]()
(1)當(dāng)
時,則
=
;-2分
(2)當(dāng)
時,則
=
;--2分
(Ⅲ)解:設(shè)
,因為![]()
,
;
所以
即
于是
得![]()
從而
---2分
=
=![]()
=
…………………………………2分
令
,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時,![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com