欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

A.AB B. C. D. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)不等式|
x+2
x+1
|≤1的實(shí)數(shù)解集為
 

B.(幾何證明選做題)如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點(diǎn)D,切線DE⊥AC,垂足為點(diǎn)E.則
AE
CE
=
 

C.(坐標(biāo)系與參數(shù)方程選做題)若△ABC的底邊BC=10,∠B=2∠A,以B點(diǎn)為極點(diǎn),BC 為極軸,則頂點(diǎn)A 的極坐標(biāo)方程為
 

查看答案和解析>>

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過(guò)A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn).
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對(duì)應(yīng)的線性變換把點(diǎn)A(x,y)變成點(diǎn)A′(13,5),試求M的逆矩陣及點(diǎn)A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為
1
-4
,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC
交于點(diǎn)D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點(diǎn).A,B,C,求線段AB的長(zhǎng).
D.選修4-5:不等式選講
對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

一、選擇題

<span id="sbiic"></span>
<center id="sbiic"></center>
    1. 20080422

      二、填空題

      13.2    14.   15.   16.①③④

      三、解答題

      17.解:(1)……………………3分

      ……………………6分

      (2)因?yàn)?sub>

      ………………9分

      ……………………12分

      文本框:  18.方法一:

      (1)證明:連結(jié)BD,

      ∵D分別是AC的中點(diǎn),PA=PC=

      ∴PD⊥AC,

      ∵AC=2,AB=,BC=

      ∴AB2+BC2=AC2,

      ∴∠ABC=90°,即AB⊥BC.…………2分

      ∴BD=,

      ∵PD2=PA2―AD2=3,PB

      ∴PD2+BD2=PB2,

      ∴PD⊥BD,

      ∵ACBD=D

      ∴PD⊥平面ABC.…………………………4分

      (2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

      ∵AB⊥BC,

      ∴AB⊥DE,

      ∵DE是直線PE的底面ABC上的射景

      ∴PE⊥AB

      ∴∠PED是二面角P―AB―C的平面角,……………………6分

      在△PED中,DE=∠=90°,

      ∴tan∠PDE=

      ∴二面角P―AB―C的大小是

      (3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

      ∵VP―EBC=VE―PBC,

      ……………………10分

      在△PBC中,PB=PC=,BC=

      而PD=

      ∴點(diǎn)E到平面PBC的距離為……………………12分

      方法二:

      (1)同方法一:

          過(guò)點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

          原點(diǎn),DE為x軸,DF為y軸,

          DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

          則D(0,0,0),P(0,0,),

          E(),B=(

          設(shè)上平面PAB的一個(gè)法向量,

          則由

          這時(shí),……………………6分

          顯然,是平面ABC的一個(gè)法向量.

          ∴二面角P―AB―C的大小是……………………8分

          (3)解:

          設(shè)平面PBC的一個(gè)法向量,

          是平面PBC的一個(gè)法向量……………………10分

          ∴點(diǎn)E到平面PBC的距離為………………12分

          19.解:(1)由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷(xiāo)售總金額為:

             (2)

          ……………………3分

          當(dāng)

          當(dāng)x=50時(shí),

          即該噸產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷(xiāo)售總最大.……………………6分

          (2)由(1)

          如果上漲價(jià)格能使銷(xiāo)假售總金額增加,

          則有……………………8分

          即x>0時(shí),

          注意到m>0

            ∴   ∴

          ∴m的取值范圍是(0,1)…………………………12分

          20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

          當(dāng)l與y軸重合時(shí),顯然符合條件,此時(shí)……………………3分

          當(dāng)l不與y軸重合時(shí),要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過(guò)點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

          由已知可得………5分

          解得無(wú)意義.

          因此,只有時(shí),拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

          (2)由已知可設(shè)直線l的方程為……………………8分

          則AB所在直線為……………………9分

          代入拋物線方程………………①

          的中點(diǎn)為

          代入直線l的方程得:………………10分

          又∵對(duì)于①式有:

          解得m>-1,

          l在y軸上截距的取值范圍為(3,+)……………………12分

          21.解:(1)由

          ……………………3分

          又由已知

          ∴數(shù)列是以3為首項(xiàng),以-1為公差的等差數(shù)列,且…………6分

          (2)∵……………………8分

          …………①

          …………②………………10分

          ②―①得

          ……………………12分

          22.解:(1)和[0,2]上有相反的單調(diào)性,

          的一個(gè)極值點(diǎn),故

             (2)令

          因?yàn)?sub>和[4,5]上有相反的單調(diào)性,

          和[4,5]上有相反的符號(hào),

          ……………………7分

          假設(shè)在點(diǎn)M在點(diǎn)M的切線斜率為3b,則

          故不存在點(diǎn)M在點(diǎn)M的切線斜率為3b………………9分

             (3)∵的圖象過(guò)點(diǎn)B(2,0),

          設(shè),依題意可令

          ……………………12分

          ∴當(dāng)

          ……………………14分

           

          <rt id="sbiic"><optgroup id="sbiic"><strike id="sbiic"></strike></optgroup></rt>
            <rt id="sbiic"><noframes id="sbiic"><rt id="sbiic"></rt>