欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

   (1)若上單調(diào)遞增,且,求證: w.w.w.k.s.5.u.c.o.m        

   (2)若處取得極值,且在時(shí),函數(shù)的圖象在直線的下方,求c的取值范圍.

查看答案和解析>>

(本小題滿分12分)

      已知函數(shù)是常數(shù),且當(dāng)時(shí),函數(shù)

取得極值w.w.w.k.s.5.u.c.o.m              

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)若曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)

的取值范圍

查看答案和解析>>

(本小題滿分12分)已知函數(shù).

(1)若曲線在點(diǎn)處與直線相切,求的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn)。

查看答案和解析>>

(本小題滿分12分)已知函數(shù)(其中)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域. 

查看答案和解析>>

一、選擇題

    20080422

    二、填空題

    13.2    14.3   15.   16.①③④

    三、解答題

    17.解:(1)……………………3分

    ……………………6分

    (2)因?yàn)?sub>

    ………………9分

    ……………………12分

    文本框:  18.方法一:

    (1)證明:連結(jié)BD,

    ∵D分別是AC的中點(diǎn),PA=PC=

    ∴PD⊥AC,

    ∵AC=2,AB=,BC=

    ∴AB2+BC2=AC2,

    ∴∠ABC=90°,即AB⊥BC.…………2分

    ∴BD=

    ∵PD2=PA2―AD2=3,PB

    ∴PD2+BD2=PB2,

    ∴PD⊥BD,

    ∵ACBD=D

    ∴PD⊥平面ABC.…………………………4分

    (2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

    ∵AB⊥BC,

    ∴AB⊥DE,

    ∵DE是直線PE的底面ABC上的射景

    ∴PE⊥AB

    ∴∠PED是二面角P―AB―C的平面角,……………………6分

    在△PED中,DE=∠=90°,

    ∴tan∠PDE=

    ∴二面角P―AB―C的大小是

    (3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

    ∵VP―EBC=VE―PBC,

    ……………………10分

    在△PBC中,PB=PC=,BC=

    而PD=

    ∴點(diǎn)E到平面PBC的距離為……………………12分

    方法二:

    (1)同方法一:

    (2)解:解:取AB的中點(diǎn)E,連結(jié)DE、PE,

    過點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

    1. <bdo id="o8s88"></bdo>

        <rt id="o8s88"><small id="o8s88"></small></rt>

        DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

        則D(0,0,0),P(0,0,),

        E(),B=(

        設(shè)上平面PAB的一個(gè)法向量,

        則由

        這時(shí),……………………6分

        顯然,是平面ABC的一個(gè)法向量.

        ∴二面角P―AB―C的大小是……………………8分

        (3)解:

        設(shè)平面PBC的一個(gè)法向量,

        是平面PBC的一個(gè)法向量……………………10分

        ∴點(diǎn)E到平面PBC的距離為………………12分

        19.解:(1)由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷售總金額為:

           (2)

        ……………………3分

        當(dāng)

        當(dāng)x=50時(shí),

        即該噸產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷售總最大.……………………6分

        (2)由(1)

        如果上漲價(jià)格能使銷假售總金額增加,

        則有……………………8分

        即x>0時(shí),

        注意到m>0

          ∴   ∴

        ∴m的取值范圍是(0,1)…………………………12分

        20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

        當(dāng)l與y軸重合時(shí),顯然符合條件,此時(shí)……………………3分

        當(dāng)l不與y軸重合時(shí),要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

        由已知可得………5分

        解得無意義.

        因此,只有時(shí),拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

        (2)由已知可設(shè)直線l的方程為……………………8分

        則AB所在直線為……………………9分

        代入拋物線方程………………①

        的中點(diǎn)為

        代入直線l的方程得:………………10分

        又∵對于①式有:

        解得m>-1,

        l在y軸上截距的取值范圍為(3,+)……………………12分

        21.解:(1)在………………1分

        當(dāng)兩式相減得:

        整理得:……………………3分

        當(dāng)時(shí),,滿足上式,

        (2)由(1)知

        ………………8分

        ……………………10分

        …………………………12分

        22.解:(1)…………………………1分

        是R上的增函數(shù),故在R上恒成立,

        在R上恒成立,……………………2分

        …………3分

        故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

        ∴當(dāng)

        的最小值………………6分

        亦是R上的增函數(shù)。

        故知a的取值范圍是……………………7分

        (2)……………………8分

        ①當(dāng)a=0時(shí),上單調(diào)遞增;…………10分

        可知

        ②當(dāng)

        即函數(shù)上單調(diào)遞增;………………12分

        ③當(dāng)時(shí),有,

        即函數(shù)上單調(diào)遞增。………………14分

         

        <center id="o8s88"><optgroup id="o8s88"></optgroup></center>