題目列表(包括答案和解析)
已知集合A={1.3.
},B={1,m} ,A
B=A, 則m=
A、0或
B、0或3 C、1或
D、1或3
【解析】因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821171349753116/SYS201207182117181068654294_ST.files/image004.png">,所以
,所以
或
.若
,則
,滿足
.若
,解得
或
.若
,則
,滿足
.若
,
顯然不成立,綜上
或
,選B.
| b2+c2-a2 |
| 2bc |
| a2+c2-b2 |
| 2ac |
設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對(duì)如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以
,
于是
,
,
![]()
所以
,當(dāng)
,且
時(shí),
取得最大值1。
(3)對(duì)于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">
所以![]()
![]()
![]()
所以,![]()
對(duì)數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對(duì)于所有的
,
的最大值為![]()
已知
,設(shè)![]()
和
是方程
的兩個(gè)根,不等式
對(duì)任意實(shí)數(shù)
恒成立;
函數(shù)
有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當(dāng)a∈[1,2]時(shí),
的最小值為3. 當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即![]()
解得實(shí)數(shù)m的取值范圍是(4,8]
已知等比數(shù)列
中,
,且
,公比
,(1)求
;(2)設(shè)
,求數(shù)列
的前
項(xiàng)和![]()
【解析】第一問,因?yàn)橛深}設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
從而![]()
第二問中,![]()
當(dāng)
時(shí),
,
時(shí)![]()
故
時(shí),
時(shí),![]()
分別討論得到結(jié)論。
由題設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
![]()
從而
……………………4分
(2)![]()
當(dāng)
時(shí),
,
時(shí)
……………………6分
故
時(shí),
……8分
時(shí),![]()
![]()
![]()
……………………10分
綜上可得
![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com