題目列表(包括答案和解析)
已知數(shù)列
是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.數(shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列
的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數(shù)列
中的
成等比數(shù)列
| Sn |
| n+C |
| bn |
| (n+36)bn+1 |
| 2009 |
| n=1 |
| 1 |
| Sn |
| n(n-1) |
| 2 |
|
一、選擇題
1. D
解析:∵a3+a7+a11=3a7為常數(shù),
∴S13=
=13a7,也是常數(shù).
2. C
解析:∵易知q≠1,S6∶S3=1∶2
=
,q3=-
,
∴S9∶S3=
=1+q3+q6=1-
+(-
)2=
.
3.A
,
又


4.D 數(shù)列
是以2為首項,以
為公比的等比數(shù)列,項數(shù)為
故選D。
5.B
6. D
解析:當q=1時,Sn,Sn+1,Sn+2構成等差數(shù)列;
當q=-2時,Sn+1,Sn,Sn+2構成等差數(shù)列;
當q=-
時,Sn,Sn+2,Sn+1構成等差數(shù)列.
7.A 僅②不需要分情況討論,即不需要用條件語句
8. D
9. D
解析:易知an=
∴a13+a23+…+an3=23+81+82+…+8n-1=8+
=
(8n-1+6).
10.A提示:依題意
可得.
11.B,
指輸入的數(shù)據(jù).
12.D
(法一)輾轉相除法:

∴
是
和
的最大公約數(shù).
(法二)更相減損術:

∴
是
和
的最大公約數(shù).
二、填空題
13.

14. 

當
時,
是正整數(shù)。
15.
解析:bn=
=
=a1
,bn+1=a1
,
=
(常數(shù)).
16.-6
三、解答題
17.解(1)

以3為公比的等比數(shù)列.
(2)由(1)知,
.
.
不適合上式,
.
18.解:(1)an=
(2)
.
19.解:(1)
,
;
(2)由(1)得
,假設數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則
即
∴
,
,
,得
∴p=r,矛盾. ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.
20.解:設未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,
,
又設銷售利潤為數(shù)列
,
當
,
考察
的單調性,

當n=9或10時,
最大
答:禮品價值為9元或10元時商品獲得最大利潤.
21.解析:(1)
時,
即
兩式相減:
即
故有
。
數(shù)列
為首項
公比
的等比數(shù)列。

(2)
則

又
(3)
①
而
②
①-②得:

22.解:(1)b4=b1+3d 即11=2+3d,
∴b1=2,
b2=5, b3=8, b4=11,
b5=8, b6=5, b7=2;
(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=
;
(3)
,d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.
當n≤50時,
當51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)
=3775+(n-50)×2+
=
∴綜上所述,
.
w.w.w.k.s.5.u.c.o.m

國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com