欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

拋物線交于A.B兩點(diǎn).=0.(1)求b的值, (2)以A.B為切點(diǎn)的拋物線的切線.交于點(diǎn)M,求M點(diǎn)的軌跡方程,(3)是否存在直線y=a.被以AB為直徑的圓截得的弦長(zhǎng)為定值.如果存在.請(qǐng)求出直線,如果不存在.說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

A、B是拋物線C:y2=2px(p>0)上的兩個(gè)動(dòng)點(diǎn),F(xiàn)是焦點(diǎn),直線AB不垂直于x軸且交x軸于點(diǎn)D.
(1)若D與F重合,且直線AB的傾斜角為
π
4
,求證:
OA
OB
p2
是常數(shù)(O是坐標(biāo)原點(diǎn));
(2)若|AF|+|BF|=8,線段AB的垂直平分線恒過(guò)定點(diǎn)Q(6,0),求拋物線C的方程.

查看答案和解析>>

已知A、B兩點(diǎn)在拋物線C:x2=4y上,點(diǎn)M(0,4)滿足
MA
BM

(1)求證:
OA
OB

(2)設(shè)拋物線C過(guò)A、B兩點(diǎn)的切線交于點(diǎn)N.
①求證:點(diǎn)N在一條定直線上;
②設(shè)4≤λ≤9,求直線MN在x軸上截距的取值范圍.

查看答案和解析>>

拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),且|AB|=
8
6
11

(1)求拋物線的方程;
(2)在x軸上是否存在一點(diǎn)C,使△ABC為正三角形?若存在,求出C點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

拋物線x2=8y的準(zhǔn)線與坐標(biāo)軸交于A點(diǎn),過(guò)A作直線與拋物線交于M、N兩點(diǎn),點(diǎn)B在拋物線的對(duì)稱軸上,P為MN中點(diǎn),且(
BM
+
MP
)•
MN
=0.
(1)求|
OB
|的取值范圍;
(2)是否存在這樣的點(diǎn)B,使得△BMN為等腰直角三角形,且∠B=90°.若存在,求出點(diǎn)B;若不存在,說(shuō)明理由.

查看答案和解析>>

拋物線數(shù)學(xué)公式與過(guò)點(diǎn)M(0,-1)的直線l相交于A、B兩點(diǎn),O為原點(diǎn).若OA和OB的斜率之和為1,
(1)求直線l的方程; (2)求拋物線數(shù)學(xué)公式與直線l圍成的圖形的面積.

查看答案和解析>>

1.B  2.C  3.D   4.C   5. B   6.A   7. C    8.A   9.A   10. B

11.B   12. A

13.甲   14.a>   15.

16. ②③④

17.解:(1)由

        ………………6分

(2)

同理:

   

,.……………12分

18.解法一:(1)F為PA的中點(diǎn)。下面給予證明:

延長(zhǎng)DE、AB交于點(diǎn)M,由E為BC中點(diǎn)知B為AM的中點(diǎn),

連接BF,則BF∥PM,PM⊏平面PDE,∴BF∥平面PDE!6分

(2)DE為正△BCD的邊BC上的中線,因此DE⊥BC,∴DE⊥AD,

又PA⊥平面ABCD,即 DE⊥PA, 所以 DE⊥平面PAD.

由此知平面PDE⊥平面PAD.

作AH⊥PD于H,則AH⊥平面PDE.

作HO⊥PM于O,

則∠AOH為所求二面角的平面角,

又在Rt∆PAD中∠PDA = 45°,PA = AD = 2,

因此AH =,又AO =,HO=  

 …………12分   

解法二:以AD為X正半軸,AP為Z軸,建立空間坐標(biāo)系,則F(0,0,a),B(1, ,P(0,0,2),D(2,0,0),E(2,

,,令面PDE,

因?yàn)锽F∥面PDE, ∴-1+a=0, ∴a=-1,

∴F(0,0,1)               ………………6分

(2)作DG⊥AB,PA⊥面ABCD,∴PA⊥DG,又因?yàn)锳B

∴DG⊥平面PAB, 平面PDE與平面PAB所成的銳二面角為,

G(

所以tan=                  ………………12分

19.解: ⑴由題意知,的可能取值為0,1,2,3,且

,

,

所以的分布列為

.          ………………6分                  

⑵記“取出的這個(gè)球是白球”為事件,“從甲盒中任取個(gè)球”為事件,

{從甲盒中任取個(gè)球均為紅球},

{從甲盒中任取個(gè)球?yàn)橐患t一白},

{從甲盒中任取個(gè)球均為白球},

顯然,且彼此互斥.

.         ………………12分     

20.解:(1) 當(dāng)a=1時(shí),f(x)= .

f(2)=2, (2)=5,

因此,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為:5x-y-8=0…3分

(2) x∈(0,2]時(shí), f(x)=

若2≤a<6,則=0在(0,2)上有根x= ,且在(0,)上

>0,在(,2)上<0, 因此, f(x)在x=處取極大值,

由于只有一個(gè)極值點(diǎn),所以極大值也是最大值.

由此得.

若a≥6,則在(0,2)上>0,因此,f(x)在x∈(0,2]時(shí)單調(diào)遞增,

由上知a=0或4 ,均不合,舍去.

綜上知  a=                    .………………8分

(3) x<0時(shí),f(x)= ,<0

 f(x)單調(diào)遞減,由k<0時(shí),f(k-)≤f(-)對(duì)任 意

 的x≥0恒成立知:k-≥-對(duì)任意的x≥0恒成立

,對(duì)任意的x≥0恒成立

             ………………12分

21.解:(1)由 ………………3分

(2)

所以數(shù)列是以-2為首項(xiàng),為公比的等比數(shù)列,

,

 

………8分

 (3)假設(shè)存在整數(shù)m、n,使成立,則,

因?yàn)?sub>

只要

,因此m只可能為2或3

當(dāng)m=2時(shí),n=1顯然成立。n≥2有故不合。

當(dāng)m=3時(shí),n=1,故不合。n=2符合要求。

n≥3,故不合。

綜上可知:m=2,n=1或m=3, n=2!13分

22.解:(1)設(shè)A、B (,直線的斜率為k.則由-4kx-4b=0 ,………………5分

(2)以A、B為切點(diǎn)的拋物線的切線分別為

    ①

          ②

①     ②   

 即所求M點(diǎn)的軌跡方程為y=-4, ………………8分

3)假設(shè)存在直線y=a,被以AB為直徑的圓截得的弦長(zhǎng)為定值ℓ,

圓心距d=,

      由ℓ為定值,所以a=-1

      而當(dāng)a=-1時(shí),=-9 ,因此a=-1不合題意,舍去。

      故符合條件的直線不存在。     ………………13分

 

 

 


同步練習(xí)冊(cè)答案