欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.若A.B是銳角△ABC的兩上內(nèi)角.則點在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 查看更多

 

題目列表(包括答案和解析)

給出以下5個命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量夾角為銳角θ,且滿足 ,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為   

查看答案和解析>>

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),|
PA
|-|
PB
|=n
,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 ADBBA    6―10 DDCBC    11―12 CA

二、填空題:本大題共4小題,每小題5分,共20分。

13.300    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時,

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

19.(本小題滿分12分)

解法一:

   (I)證明

如圖,連結(jié)AC,AC交BD于點G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.

又E為PC的中點,

∴EG//PA。

∵EG平面EDB,PA平面EDB,

∴PA//平面EDB   ………………4分

   (II)證明:

∵ PD⊥底面ABCD,∴PD⊥DB,PD⊥DC,PD⊥DB。

又∵BC⊥DC,PD∩DC=D,

∴BC⊥平面PDC。

∴PC是PB在平面PDC內(nèi)的射影。

∵PD⊥DC,PD=DC,點E是PC的中點,

∴DE⊥PC。

由三垂線定理知,DE⊥PB。

∵DE⊥PB,EF⊥PB,DE∩EF=E,

∴PB⊥平面EFD。   …………………………8分

   (III)解:

∵PB⊥平面EFD,

∴PB⊥FD。

又∵EF⊥PB,F(xiàn)D∩EF=F,

∴∠EFD就是二面角C―PB―D的平面角!10分

∵PD=DC=BC=2,

∴PC=DB=

∵PD⊥DB,

由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

∴DE⊥平面PBC。

∵EF平面PBC,

∴DE⊥EF。

∴∠EFD=60°。

故所求二面角C―PB―D的大小為60°。  ………………12分

解法二:

如圖,以點D為坐標原點,DA、DC、DP所在直線分別為x軸、y軸、z軸,

建立空間直角坐標系,得以下各點坐標:D(0,0,0),A(2,0,0),B(2,2,0),

C(0,2,0),P(0,0,2)   ………………1分

   (I)證明:

連結(jié)AC,AC交BD于點G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.G點坐標為(1,1,0)。

<track id="4yvyd"><th id="4yvyd"></th></track>
        <rp id="4yvyd"><input id="4yvyd"></input></rp>
        <ul id="4yvyd"><kbd id="4yvyd"></kbd></ul>

          高考資源網(wǎng)www.ks5u.com

          ∴PA//平面EDB   ………………4分

             (II)證明:

             (III)解:

          ∵PB⊥平面EFD,

          ∴PB⊥FD。

          又∵EF⊥PB,F(xiàn)D∩EF=F,

          ∴∠EFD就是二面角C―PB―D的平面角。………………10分

          ∴∠EFD=60°。

          故所求二面角C―PB―D的大小為60°。  ………………12分

          20.(本小題滿分12分)

             (I)解:

          設(shè) “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,所以取出的4個球均為黑球的概率為

             ………………2分

          ,

          ∴取出的4個球均為黑球的概率為   ………………5分

             (II)解:設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是黑球,1個是紅球”為事件,“從乙盒內(nèi)取出的2個球均為黑球;從甲盒內(nèi)取出的2個球中,1個是黑球,1個是紅球為事件D。

              ∴取出的“4個球中恰有3個黑球”為事件C+D。

          ∵事件C,D互斥,

          ∴取出的4個球中恰有3個黑球的概率為

          21.(本小題滿分12分)

             (I)解:

          由題意設(shè)雙曲線S的方程為   ………………2分

          c為它的半焦距,

           

             (II)解:

          22.(本小題滿分12分)

             (I)解:

             (II)解:

             (III)解:

             

           

          w.w.w.k.s.5.u.c.o.m

          www.ks5u.com