題目列表(包括答案和解析)
已知函數(shù)
,其中
.
(1)若
在
處取得極值,求曲線
在點(diǎn)
處的切線方程;
(2)討論函數(shù)
在
的單調(diào)性;
(3)若函數(shù)
在
上的最小值為2,求
的取值范圍.
【解析】第一問,
因
在
處取得極值
所以,
,解得
,此時(shí)
,可得求曲線
在點(diǎn)
處的切線方程為:![]()
第二問中,易得
的分母大于零,
①當(dāng)
時(shí),
,函數(shù)
在
上單調(diào)遞增;
②當(dāng)
時(shí),由
可得
,由
解得![]()
第三問,當(dāng)
時(shí)由(2)可知,
在
上處取得最小值
,
當(dāng)
時(shí)由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數(shù)
在
上的最小值為2時(shí),求
的取值范圍是![]()
已知
是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若
,是否存在
,有
?請(qǐng)說明理由;
(Ⅱ)若
(a、q為常數(shù),且aq
0)對(duì)任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若
試確定所有的p,使數(shù)列
中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請(qǐng)證明.
【解析】第一問中,由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)
反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
![]()
由
,得
![]()
當(dāng)
為奇數(shù)時(shí),此時(shí),一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時(shí),命題都成立
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對(duì)任意的
有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
![]()
由
,得![]()
當(dāng)x變化時(shí),
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時(shí),取
,有
,故
時(shí)不合題意.當(dāng)
時(shí),令
,即![]()
![]()
令
,得![]()
①當(dāng)
時(shí),
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對(duì)于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時(shí),
,對(duì)于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時(shí),
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時(shí),不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時(shí),![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com