題目列表(包括答案和解析)
已知橢圓![]()
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓
的方程;
(II)若過點
(2,0)的直線與橢圓
相交于兩點
,設(shè)
為橢圓上一點,且滿足
(O為坐標原點),當
<
時,求實數(shù)
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。
第一問中,利用![]()
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中
,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
![]()
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當
時
單調(diào)遞減;當
時
單調(diào)遞增,故當
時,
取最小值![]()
于是對一切
恒成立,當且僅當
. 、
令
則![]()
當
時,
單調(diào)遞增;當
時,
單調(diào)遞減.
故當
時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當
時,
單調(diào)遞減;當
時,
單調(diào)遞增.故當
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數(shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出
取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當
時,取
,有
,故
時不合題意.當
時,令
,即![]()
![]()
令
,得![]()
①當
時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當
時,
,對于
,
,故
在
上單調(diào)遞增.因此當取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當n=1時,不等式左邊=
=右邊,所以不等式成立.
當
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項公式
;
(2)若不等式
對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價于
,
當
時,
;當
時,
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當
時,
,成立.
假設(shè)當
時,不等式
成立,
當
時,
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項公式
, …………10分
, …………12分
所以對
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
已知正數(shù)數(shù)列{an }中,a1 =2.若關(guān)于x的方程
(
)對任意自然數(shù)n都有相等的實根.
(1)求a2 ,a3的值;
(2)求證![]()
【解析】(1)中由題意得△
,即
,進而可得
,.
(2)中由于
,所以
,因為
,所以數(shù)列
是以
為首項,公比為2的等比數(shù)列,知數(shù)列
是以
為首項,公比為
的等比數(shù)列,利用裂項求和得到不等式的證明。
(1)由題意得△
,即
,進而可得
(2)由于
,所以
,因為
,所以數(shù)列
是以
為首項,公比為2的等比數(shù)列,知數(shù)列
是以
為首項,公比為
的等比數(shù)列,于是
,
所以![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com