題目列表(包括答案和解析)
設
,橢圓方程為
,拋物線方程為
。如圖所示,過點
作
軸的平行線,與拋物線在第一象限的交點為G。已知拋物線在點
G的切線經過橢圓的右焦點F1。
(1)求滿足條件的橢圓方程和拋物線方程; (6分)
(2)設A、B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得
△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具
體求出這些點的坐標)。(8分)
( 文科生做)設數(shù)列{an}的前n項為Sn,點
均在函數(shù)y = 3x-2的圖象上.
(1)求數(shù)列{an}的通項公式。( 6分 )
(2)設
,Tn為數(shù)列{bn}的前n項和,求使得
對所有
都成立的最小正整數(shù)m.(6分 )
設
,橢圓方程為
,拋物線方程為
。如圖所示,過點
作
軸的平行線,與拋物線在第一象限的交點為G。已知拋物線在點
G的切線經過橢圓的右焦點F1。
(1)求滿足條件的橢圓方程和拋物線方程; (6分)
(2)設A、B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得
△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具
體求出這些點的坐標)。(8分)
已知函數(shù)f(x)=
,
為常數(shù)。
(I)當
=1時,求f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),求
的取值范圍。
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問中,利用當a=1時,f(x)=
,則f(x)的定義域是
然后求導,
,得到由
,得0<x<1;由
,得x>1;得到單調區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),則
或
在區(qū)間[1,2]上恒成立,即即
,或
在區(qū)間[1,2]上恒成立,解得a的范圍。
(1)當a=1時,f(x)=
,則f(x)的定義域是![]()
。
由
,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函數(shù),在(1,
上是減函數(shù)。……………6分
(2)
。若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),
則
或
在區(qū)間[1,2]上恒成立!
,或
在區(qū)間[1,2]上恒成立。即
,或
在區(qū)間[1,2]上恒成立。
又h(x)=
在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=
,h(x)min=h(1)=3
即![]()
,或
。 ∴![]()
,或
。
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區(qū)間
上單調遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當
,即
時,同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數(shù)
的圖象恒在直線
下方.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com