題目列表(包括答案和解析)
,
,
為常數(shù),離心率為
的雙曲線
:
上的動(dòng)點(diǎn)
到兩焦點(diǎn)的距離之和的最小值為
,拋物線
:![]()
的焦點(diǎn)與雙曲線
的一頂點(diǎn)重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負(fù)常數(shù))上任意一點(diǎn)
向拋物線
引兩條切線,切點(diǎn)分別為
、
,坐標(biāo)原點(diǎn)
恒在以
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點(diǎn)為
,所以拋物線
的方程![]()
第二問中,
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:![]()
借助于根與系數(shù)的關(guān)系得到即
,
是方程
的兩個(gè)不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點(diǎn)為
,所以拋物線
的方程![]()
(Ⅱ)設(shè)
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:
,
即
,
是方程
的兩個(gè)不同的根,所以![]()
由已知易得
,即![]()
已知曲線
上動(dòng)點(diǎn)
到定點(diǎn)
與定直線
的距離之比為常數(shù)
.
(1)求曲線
的軌跡方程;
(2)若過點(diǎn)
引曲線C的弦AB恰好被點(diǎn)
平分,求弦AB所在的直線方程;
(3)以曲線
的左頂點(diǎn)
為圓心作圓
:
,設(shè)圓
與曲線
交于點(diǎn)
與點(diǎn)
,求
的最小值,并求此時(shí)圓
的方程.
【解析】第一問利用(1)過點(diǎn)
作直線
的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),
;,化簡得
![]()
第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè)
,, 不妨設(shè)
.
由于點(diǎn)M在橢圓C上,所以
.
由已知
,則
,
由于
,故當(dāng)
時(shí),
取得最小值為
.
計(jì)算得,
,故
,又點(diǎn)
在圓
上,代入圓的方程得到
.
故圓T的方程為:![]()
如圖,在四棱錐P-ABCD中,則面PAD⊥底面 ABCD,
![]()
側(cè)棱PA=PD=
,底面ABCD為直角梯形,其中
BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為
?若存在,求出
的值;若不存在,請(qǐng)說明理由.
已知拋物線C的對(duì)稱軸與y軸平行,頂點(diǎn)到原點(diǎn)的距離為5,若將拋物線C向上平移3個(gè)單位,則在x軸上截得的線段為原拋物線C在x軸上截得的線段的一半;若將拋物線C向左平移1個(gè)單位,則所得拋物線過原點(diǎn),求拋物線C的方程.
|
| α |
|
| β |
|
| π |
| 4 |
| ||
| 2 |
|
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com