欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.直線與軸的交點分別為A.B.O為坐標(biāo)原點.則內(nèi)切圓的方程為(A ) 查看更多

 

題目列表(包括答案和解析)

 直線軸的交點分別為AB,O為坐標(biāo)原點,則內(nèi)切圓的方程為                  

 

查看答案和解析>>

直線軸的交點分別為A、B,O為坐標(biāo)原點,則內(nèi)切圓的方程為                  

查看答案和解析>>

直線4x-3y-12=0與x、y軸的交點分別為A、B,O為坐標(biāo)原點,則△AOB內(nèi)切圓的方程為( 。
A、(x-1)2+(y+1)2=1
B、(x-1)2+(y-1)2=1
C、(x-1)2+(y+1)2=
2
D、(x-1)2+(y+1)2=2

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點,極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線C上點M到直線l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.
B.已知二階矩陣屬于特征值-1的一個特征向量為,求矩陣A的逆矩陣.

C.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點,極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為(t為參數(shù),t∈{R}).試求曲線C上點M到直線l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.

查看答案和解析>>

一、ADBAB  CDCBC

二、11  9   12     13  384    14     15     

三、解答題

16.解:(I)

       又,∴   ……5分

     (II)

   

17.解:(Ⅰ) 拋擲一次出現(xiàn)的點數(shù)共有6×6 = 36種不同結(jié)果,其中“點數(shù)之和為7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6個結(jié)果,

∴拋擲一次出現(xiàn)的點數(shù)之和為7的概率為 ………………………… 2分

ξ可取1 , 2 , 3 , 4

P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

P (ξ= 4) =

∴ξ的概率分布列為

ξ

1

2

3

4

P

    …… 6分

    Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

    (Ⅱ) 不限制兩人拋擲的次數(shù),甲獲勝的概率為:

     P =+ ()2×+ ()4×+ … = .      ………… 12分

     

    18.解:解:(1)它是有一條側(cè)棱垂直于底面的四棱錐      … 3分

    (注:評分注意實線、虛線;垂直關(guān)系;長度比例等)

    (2)由(1)得,6ec8aac122bd4f6e,6ec8aac122bd4f6e,得6ec8aac122bd4f6e

    6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e,6ec8aac122bd4f6e

    6ec8aac122bd4f6e…………6分

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e………8分

    又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

    ∴二面角6ec8aac122bd4f6e的平面角為6ec8aac122bd4f6e… ………8分

    (3)解略。 

    19.(I)證明:   ∵  ∴   ∵,

    是首項為2,公差為1的等差數(shù)列.       …………3分

    (II)解:=,     …6分

      =.   …7分

    (III)證明: ,

    .       …… 9分

        .…………12分

    20.解(Ⅰ)∵6ec8aac122bd4f6e過(0,0)    則6ec8aac122bd4f6e

    ∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

    將C點坐標(biāo)代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

    ∴橢圓m:6ec8aac122bd4f6e  …………5分

    (Ⅱ)由條件D(0,-2)  ∵M(jìn)(0,t)

    1°當(dāng)k=0時,顯然-2<t<2  …………6分

    2°當(dāng)k≠0時,設(shè)6ec8aac122bd4f6e

    6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

    由△>0  可得  6ec8aac122bd4f6e   ①

    設(shè)6ec8aac122bd4f6e

    6ec8aac122bd4f6e     6ec8aac122bd4f6e   

    6ec8aac122bd4f6e           …………10分

    6ec8aac122bd4f6e 

    6ec8aac122bd4f6e   ②

    ∴t>1  將①代入②得   1<t<4

    ∴t的范圍是(1,4)。綜上t∈(-2,4)  ………………13分

     

    21.解: (1) 依題知,得:的方程為,

     即直線的方程是 ………………… 6分

    (2)  證明:由(1)得

    ①由于  ,所以,

    ,所以

    ②因為  ,

    ,所以,即。

    ,所以

    故當(dāng)時,有………………… 14分