題目列表(包括答案和解析)
已知橢圓C:
的一個頂點為A(2,0),離心率為
,直線
與橢圓C交于不同的兩點M,N。
(1) 求橢圓C的方程
(2) 當
的面積為
時,求k的值。
【解析】(1)∵
∴
∴
∴![]()
(2)![]()
![]()
∴
,![]()
∴![]()
![]()
化簡得:
,解得![]()
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | n n |
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
| n |
| k=2 |
| C | k n |
| n |
| k=1 |
| C | k n |
| n |
| k=1 |
| C | k n |
| n |
| k=1 |
| 1 |
| k+1 |
| C | k n |
| 2n+1-1 |
| n+1 |
請先閱讀:
在等式
(
)的兩邊求導(dǎo),得:
,
由求導(dǎo)法則,得
,化簡得等式:
。
(1)利用上題的想法(或其他方法),結(jié)合等式
(
,正整數(shù)
),證明:
。
(2)對于正整數(shù)
,求證:
(i)
; (ii)
; (iii)
。
請先閱讀:
在等式
(
)的兩邊求導(dǎo),得:
,
由求導(dǎo)法則,得
,化簡得等式:
。
(1)利用上題的想法(或其他方法),結(jié)合等式
(
,正整數(shù)
),證明:
。
(2)對于正整數(shù)
,求證:
(i)
; (ii)
; (iii)
。
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com