題目列表(包括答案和解析)
| 1 |
| x+a |
| 1 |
| x+a |
| 1 |
| x+a |
某港口海水的深度
(米)是時(shí)間
(時(shí))(
)的函數(shù),記為:![]()
已知某日海水深度的數(shù)據(jù)如下:
|
|
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
|
|
10.0 |
13.0 |
9.9 |
7.0 |
10.0 |
13.0 |
10.1 |
7.0 |
10.0 |
經(jīng)長(zhǎng)期觀察,
的曲線可近似地看成函數(shù)
的圖象
(I)試根據(jù)以上數(shù)據(jù),求出函數(shù)
的振幅、最小正周期和表達(dá)式;
(II)一般情況下,船舶航行時(shí),船底離海底的距離為
米或
米以上時(shí)認(rèn)為是安全的(船舶?繒r(shí),船底只需不碰海底即可)。某船吃水深度(船底離水面的距離)為
米,如果該船希望在同一天內(nèi)安全進(jìn)出港,請(qǐng)問(wèn),它至多能在港內(nèi)停留多長(zhǎng)時(shí)間(忽略進(jìn)出港所需時(shí)間)
【解析】第一問(wèn)中利用三角函數(shù)的最小正周期為:
T=12 振幅:A=3,b=10,
第二問(wèn)中,該船安全進(jìn)出港,需滿足:
即:
∴
又
,可解得結(jié)論為
或
得到。
已知數(shù)列
是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列
的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對(duì)任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時(shí),
滿足
,![]()
,
![]()
第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問(wèn)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時(shí),
滿足
,![]()
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列
中的
成等比數(shù)列
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com