題目列表(包括答案和解析)
| b2+c2-a2 |
| 2bc |
| a2+c2-b2 |
| 2ac |
給出問題:已知
滿足
,試判定
的形狀.某學生的解答如下:
解:(i)由余弦定理可得,
,
![]()
,
![]()
,
故
是直角三角形.
(ii)設
外接圓半徑為
.由正弦定理可得,原式等價于![]()
![]()
,
故
是等腰三角形.
綜上可知,
是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果. .
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說明理由.
【解析】第一問中取
,則
;
…………1分
對等式兩邊求導,得![]()
取
,則
得到結論
第二問中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當
時,
;
當
時,
;
猜想:當
時,
運用數學歸納法證明即可。
解:⑴取
,則
;
…………1分
對等式兩邊求導,得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當
時,
;
當
時,
;
當
時,
;
…………6分
猜想:當
時,
,下面用數學歸納法證明:
由上述過程可知,
時結論成立,
假設當
時結論成立,即
,
當
時,![]()
而![]()
∴![]()
即
時結論也成立,
∴當
時,
成立。
…………11分
綜上得,當
時,
;
當
時,
;
當
時,
((本小題共13分)
若數列
滿足
,數列
為
數列,記
=
.
(Ⅰ)寫出一個滿足
,且
〉0的
數列
;
(Ⅱ)若
,n=2000,證明:E數列
是遞增數列的充要條件是
=2011;
(Ⅲ)對任意給定的整數n(n≥2),是否存在首項為0的E數列
,使得
=0?如果存在,寫出一個滿足條件的E數列
;如果不存在,說明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數列A5。
(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數列A5)
(Ⅱ)必要性:因為E數列A5是遞增數列,所以
.所以A5是首項為12,公差為1的等差數列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故
是遞增數列.綜上,結論得證。
已知
.
(1)求
的單調區(qū)間;
(2)證明:當
時,
恒成立;
(3)任取兩個不相等的正數
,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
當k
0時,
>0,所以函數g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當k>0時,
>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 當x變化時,h(x),
的變化情況如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
設G(x)=lnx-
(x
1)
=
=![]()
0,當且僅當x=1時,
=0所以G(x) 為減函數, 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,綜上,當x
1時, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數,并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=![]()
∴l(xiāng)nx0 –lnx
>0, ∴x0 >x![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com