欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

求證:(. 查看更多

 

題目列表(包括答案和解析)

17、求證:(Cn02+(Cn12+(Cn22+…+(Cnn2=C2n2

查看答案和解析>>

20、求證:(1+x)n+(1-x)n<2n,其中|x|<1,n≥2,n∈N.

查看答案和解析>>

求證:(1)n≥0,試用分析法證明,
n+2
-
n+1
n+1
-
n
,
(2)當a、b、c為正數(shù)時,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
相等的非零實數(shù).用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.

查看答案和解析>>

求證:(1)a2+b2+3≥ab+
3
(a+b)
;         
(2)
6
+
7
2
2
+
5

查看答案和解析>>

求證:
(1)函數(shù)f(x)=2x-1在R上是增函數(shù);
(2)函數(shù)f(x)=2x-
1x
在定義域內(nèi)是奇函數(shù).

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,共70分.

1.   2.   3.   4.   5.1   6.  7.  8. 9.16   10.8   11.  12.   13.  14. ①③

二、解答題:本大題共6小題,共90分.

15.(1)設集合中的點為事件,  區(qū)域的面積為36,  區(qū)域的面積為18

(2)設點在集合為事件,  甲、乙兩人各擲一次骰子所得的點數(shù)為36個,其中在集合中的點有21個,故

16.(1)由4sinB ? sin2+ cos2B = 1 +得:

,          

(2)法1:為銳角          

由已知得:, 角為銳角      可得:

由正弦定理得:

法2:由得:,  由余弦定理知:

即:          

17.(1)證明:連接,取中點,連接

在等腰梯形中,,AB=AD,,E是BC的中點

都是等邊三角形   

平面    平面

平面   

(2)證明:連接于點,連接

,且    四邊形是平行四邊形   是線段的中點

是線段的中點     

平面   平面

(3)與平面不垂直.

證明:假設平面,  則

平面  

,平面    平面   

,這與矛盾

與平面不垂直.

18.(1)設橢圓的標準方程為

依題意得:,得   ∴  所以,橢圓的標準方程為

(2)設過點的直線方程為:,代入橢圓方程得;

  (*)

依題意得:,即 

得:,且方程的根為  

當點位于軸上方時,過點垂直的直線與軸交于點,

直線的方程是:,  

所求圓即為以線段DE為直徑的圓,故方程為:

同理可得:當點位于軸下方時,圓的方程為:

(3)設,=得:,代入

(**)    要證=,即證

由方程組(**)可知方程組(1)成立,(2)顯然成立.∴=

19..解(1)的解集有且只有一個元素,

當a=4時,函數(shù)上遞減

故存在,使得不等式成立

當a=0時,函數(shù)上遞增

故不存在,使得不等式成立

綜上,得a=4,…………………………5分

(2)由(1)可知

當n=1時,

時,

(3),

+

               =+>

               >    

20解:(1)由的定義可知,(對所有實數(shù))等價于

(對所有實數(shù))這又等價于,即

對所有實數(shù)均成立.        (*)

  由于的最大值為,

  故(*)等價于,即,這就是所求的充分必要條件

(2)分兩種情形討論

     (i)當時,由(1)知(對所有實數(shù)

則由易知,

再由的單調(diào)性可知,

函數(shù)在區(qū)間上的單調(diào)增區(qū)間的長度

(參見示意圖1)

(ii)時,不妨設,則,于是

   當時,有,從而

時,有

從而  ;

時,,及,由方程

      解得圖象交點的橫坐標為

                          ⑴

 

顯然

這表明之間。由⑴易知

 

綜上可知,在區(qū)間上,   (參見示意圖2)

故由函數(shù)的單調(diào)性可知,在區(qū)間上的單調(diào)增區(qū)間的長度之和為,由于,即,得

          ⑵

故由⑴、⑵得 

綜合(i)(ii)可知,在區(qū)間上的單調(diào)增區(qū)間的長度和為。

 

 

 

 

                                    

 


同步練習冊答案