欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知向量a.b.c中任意兩個都不共線.并且a+b與c共線.b+c與a共線.那么a+b+c等于 A.a(chǎn) B.b C.c D.0 查看更多

 

題目列表(包括答案和解析)

已知向量
a
b
、
c
中任意兩個都不共線,并且
a
+
b
c
共線,
b
+
c
a
共線,那么
a
+
b
+
c
等于(  )

查看答案和解析>>

已知向量
a
,
b
c
中任意兩個都不共線,并且
a
+
b
c
共線,
b
+
c
a
共線,那么
a
+
b
+
c
等于( 。

查看答案和解析>>

已知向量、、中任意兩個都不共線,并且+共線,+共線,那么++等于( )
A.
B.
C.
D.

查看答案和解析>>

已知向量數(shù)學(xué)公式、數(shù)學(xué)公式數(shù)學(xué)公式中任意兩個都不共線,并且數(shù)學(xué)公式+數(shù)學(xué)公式數(shù)學(xué)公式共線,數(shù)學(xué)公式+數(shù)學(xué)公式數(shù)學(xué)公式共線,那么數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

在以下四個命題中,不正確的個數(shù)為( 。
(1)若
a
b
-
c
都是非零向量,則
a
 • 
b
=
a
 • 
c
a
⊥(
b
-
c
)的充要條件

(2)已知不共線的三點A、B、C和平面ABC外任意一點O,點P在平面ABC內(nèi)的充要條件是存在x,y,z∈R,
OP
=x
OA
+y
OB
+z
OC
且x+y+z=1
(3)空間三個向量
a
,
b
,
c
,若
a
b
,
 b
c
,  則
a
c

(4)對于任意空間任意兩個向量
a
, 
b
a
b
的充要條件是存在唯一的實數(shù)λ,使
a
b

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時等號成立。)

  (當(dāng)且僅當(dāng) 時等號成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

      20081226

      (2)

        由

      分別令,的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

      (3) 列表如下:

      0

      0

      1

      0

      ―1

      0

      19.解:(I)由,則.

      兩式相減得. 即.          

      時,.∴數(shù)列是首項為4,公比為2的等比數(shù)列.

      (Ⅱ)由(I)知.∴            

      ①當(dāng)為偶數(shù)時,,

      ∴原不等式可化為,即.故不存在合條件的.      

      ②當(dāng)為奇數(shù)時,.

      原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

      20.解:(1)依題意,得

         (2)令

      當(dāng)在此區(qū)間為增函數(shù)

      當(dāng)在此區(qū)間為減函數(shù)

      當(dāng)在此區(qū)間為增函數(shù)

      處取得極大值又

      因此,當(dāng)

      要使得不等式

      所以,存在最小的正整數(shù)k=2007,

      使得不等式恒成立!7分

        (3)(方法一)

           

      又∵由(2)知為增函數(shù),

      綜上可得

      (方法2)由(2)知,函數(shù)

      上是減函數(shù),在[,1]上是增函數(shù)又

      所以,當(dāng)時,-

      又t>0,

      ,且函數(shù)上是增函數(shù),

       

      綜上可得

      21.解:(1) 

      當(dāng),

      函數(shù)有一個零點;當(dāng)時,,函數(shù)有兩個零點。

         (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

      由②知對,都有

      又因為恒成立,  ,即,即

      ,

      當(dāng)時,,

      其頂點為(-1,0)滿足條件①,又,

      都有,滿足條件②!啻嬖,使同時滿足條件①、②。

         (3)令,則

      內(nèi)必有一個實根。即,

      使成立。