欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

. 查看更多

 

題目列表(包括答案和解析)

10、,設(shè){an}是正項數(shù)列,其前n項和Sn滿足:4Sn=(an-1)(an+3),則數(shù)列{an}的通項公式an=
2n+1

查看答案和解析>>

精英家教網(wǎng),如圖給出的是計算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一個程序框圖,其中判斷框內(nèi)填入的條件是
 

查看答案和解析>>

5、α,β為兩個互相垂直的平面,a、b為一對異面直線,下列條件:
①a∥α、b?β;②a⊥α.b∥β;
③a⊥α.b⊥β;④a∥α、b∥β且a與α的距離等于b與β的距離,其中是a⊥b的充分條件的有(  )

查看答案和解析>>

,設(shè)f(x)是定義在R上的以3為周期的奇函數(shù),且f(2)=0,則.
(i)f(
32
)=
 
;
(ii)設(shè)S為f(x)=0在區(qū)間[0,20]內(nèi)的所有根之和,則S的最小值為
 

查看答案和解析>>

,已知y=f(x)是定義在R上的單調(diào)遞減函數(shù),對任意的實數(shù)x,y都有f(x+y)=f(x)f(y)且f(0)=1,數(shù)列{an}滿足a1=4,f(log3-
an+1
4
)f(-1-log3
an
4
)=1
(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn是數(shù)列{an}的前n項和,試比較Sn與6n2-2的大小.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期為                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 當(dāng)時,函數(shù)的最大值為1,最小值 ………… 12分

 18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對立事件概率公式

   得:

即這箱產(chǎn)品被用戶拒絕接收的概率為           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)連結(jié)B1CBCO,則OBC的中點,連結(jié)DO。

∵在△AC中,O、D均為中點,

ADO   …………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| =

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0),

(Ⅰ)連結(jié)CBOC的中點,連結(jié)DO,則                  O.       =

A平面BD

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

    •       令y = -1,解得m = (,-1,0)

            二面角DBC的余弦值為cos<n , m>=

      ∴二面角DBC的大小為arc cos          …………12分

      20、解: 對函數(shù)求導(dǎo)得: ……………2分

      (Ⅰ)當(dāng)時,                   

      解得

        解得

      所以, 單調(diào)增區(qū)間為,,

      單調(diào)減區(qū)間為(-1,1)                                    ……………5分

      (Ⅱ) 令,即,解得     ………… 6分

      時,列表得:

       

      x

      1

      +

      0

      0

      +

      極大值

      極小值

      ……………8分

      對于時,因為,所以

      >0                                                    …………   10 分

      對于時,由表可知函數(shù)在時取得最小值

      所以,當(dāng)時,                              

      由題意,不等式恒成立,

      所以得,解得                          ……………12分

      21、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應(yīng)準線,

      離心率為的橢圓

      設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

      ,,∴點在x軸上,且,則3,

      解之得:,     

      ∴坐標(biāo)原點為橢圓的對稱中心 

      ∴動點M的軌跡方程為:                 …………    4分

      (II)設(shè),設(shè)直線的方程為(-2〈n〈2),代入

                           ………… 5分

      , 

           …………  6分

      ,K(2,0),,

      ,

       

      解得: (舍)      ∴ 直線EF在X軸上的截距為    …………8分

      (Ⅲ)設(shè),由知, 

      直線的斜率為                …………    10分

      當(dāng)時,;

      當(dāng)時,,

      時取“=”)或時取“=”),

                                      

      綜上所述                         …………  12分  

      22、(I)解:方程的兩個根為,,

      當(dāng)時,,所以;

      當(dāng)時,,所以;

      當(dāng)時,,所以時;

      當(dāng)時,,,所以.    …………  4分

      (II)解:

      .                        …………  8分

      (III)證明:,

      所以,

      .                       …………  9分

      當(dāng)時,

      ,

                                               …………  11分

      同時,

      .                                    …………  13分

      綜上,當(dāng)時,.                     …………  14分

       

      <delect id="1cgwu"><sup id="1cgwu"></sup></delect>
      <nobr id="1cgwu"><tt id="1cgwu"></tt></nobr>