題目列表(包括答案和解析)
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對(duì)任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問中,若對(duì)任意
不等式
恒成立,問題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對(duì)任意
不等式
恒成立,
問題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在
處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。
第二問中,利用存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
![]()
(2)不等式
,即
,即
.
轉(zhuǎn)化為存在實(shí)數(shù)
,使對(duì)任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
設(shè)
,則.![]()
設(shè)
,則
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有
.
故
在區(qū)間
上是減函數(shù)。又![]()
故存在
,使得
.
當(dāng)
時(shí),有
,當(dāng)
時(shí),有
.
從而
在區(qū)間
上遞增,在區(qū)間
上遞減.
又
[來源:]
![]()
所以當(dāng)
時(shí),恒有
;當(dāng)
時(shí),恒有![]()
;
故使命題成立的正整數(shù)m的最大值為5
(本小題滿分14分)
設(shè)函數(shù)
定義在
上,
,導(dǎo)函數(shù)![]()
(Ⅰ)求
的單調(diào)區(qū)間的最小值;(Ⅱ)討論
與
的大小關(guān)系;(Ⅲ)是否存在
,使得
對(duì)任意
成立?若存在,求出
的取值范圍;若不存在請(qǐng)說明理由。
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
和函數(shù)
在區(qū)間
上均為增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若方程
有唯一解,求實(shí)數(shù)
的值.
【解析】第一問,
當(dāng)0<x<2時(shí),
,當(dāng)x>2時(shí),
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當(dāng)
時(shí)
,
在
上均為增函數(shù)
(Ⅱ)中方程
有唯一解
有唯一解
設(shè)
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個(gè)極小值,![]()
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程
有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時(shí),
,當(dāng)x>2時(shí),
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當(dāng)
時(shí)
,
在
上均為增函數(shù) ……………6分
(Ⅱ)方程
有唯一解
有唯一解
設(shè)
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個(gè)極小值,![]()
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程
有唯一解
(本題滿分14分)
已知函數(shù)
。
(1)求
的最大值及取得最大值時(shí)的
的值;
(2)求
在
上的單調(diào)增區(qū)間。
一、選擇題:本大題共8個(gè)小題,每小題5分,共40分。
題號(hào)
1
2
3
4
5
6
7
8
答案
B
A
B
D
C
D
C
D
二、填空題:本大題共6個(gè)小題,每小題5分,共30分
9.
10. 60
11.
12.
13. 2 14. -2;1
三、解答題: 本大題共6個(gè)小題,共80分。
15. (本小題共13分)
已知函數(shù)區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image111.gif)
(Ⅰ)求函數(shù)
的定義域;
(Ⅱ)求函數(shù)
在區(qū)間
上的最值。
解:(Ⅰ)由題意
所求定義域?yàn)?nbsp;
{
}
…………4分
(Ⅱ)區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image214.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image216.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image218.gif)
…………9分
由
知
,
所以當(dāng)
時(shí),
取得最大值為
;
…………11分
當(dāng)
時(shí),
取得最小值為0 。
…………13分
16. (本小題共13分)
已知數(shù)列
中,
,點(diǎn)(1,0)在函數(shù)
的圖像上。
(Ⅰ)求數(shù)列
的通項(xiàng);
(Ⅱ)設(shè)
,求數(shù)列
的前n項(xiàng)和
。
解:(Ⅰ)由已知
又區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image234.gif)
…………3分
所以 數(shù)列
是公比為
的等比數(shù)列 所以
…………6分
(Ⅱ) 由
…………9分
所以
…………13分
17. (本小題共14分)
如圖,在正三棱柱
中,
,
是
的中點(diǎn),點(diǎn)
在
上,
。
(Ⅰ)求
所成角的大小;
(Ⅱ)求二面角
的正切值;
(Ⅲ) 證明
.
解:(Ⅰ)在正三棱柱
中, 區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image245.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image247.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image249.gif)
又
是正△ABC
邊的中點(diǎn),區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image247.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image252.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image234.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image254.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image247.gif)
…………3分
∠
為
所成角
又
sin∠
=
…………5分
所以
所成角為
(
)
(Ⅱ) 由已知得 區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image270.gif)
∠
為二面角
的平面角, 所以
…………9分
(Ⅲ)證明: 依題意 得
,
,
因?yàn)?nbsp;
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image283.gif)
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image285.gif)
…………11分
又由(Ⅰ)中
知
,且區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image287.gif)
,
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image283.gif)
…………14分
18. (本小題共13分)
某校高二年級(jí)開設(shè)《幾何證明選講》及《數(shù)學(xué)史》兩個(gè)模塊的選修科目。每名學(xué)生至多選修一個(gè)模塊,
的學(xué)生選修過《幾何證明選講》,
的學(xué)生選修過《數(shù)學(xué)史》,假設(shè)各人的選擇相互之間沒有影響。
(Ⅰ)任選1名學(xué)生,求該生沒有選修過任何一個(gè)模塊的概率;
(Ⅱ)任選4名學(xué)生,求至少有3人選修過《幾何證明選講》的概率。
解:(Ⅰ)設(shè)該生參加過《幾何證明選講》的選修為事件A,
參加過《數(shù)學(xué)史》的選修為事件B, 該生沒有選修過任何一個(gè)模塊的概率為P,
則區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image295.gif)
所以 該生沒有選修過任何一個(gè)模塊的概率為
…………6分
(Ⅱ)至少有3人選修過《幾何證明選講》的概率為
所以至少有3人選修過《幾何證明選講》的概率為
…………13分
19. (本小題共13分)
已知函數(shù)
的圖像如圖所示。
(Ⅰ)求
的值;
(Ⅱ)若函數(shù)
在
處的切線方程為
,求函數(shù)
的
解析式;
(Ⅲ)若
=5,方程
有三個(gè)不同的根,求實(shí)數(shù)
的取值范圍。
解: 函數(shù)
的導(dǎo)函數(shù)為 區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image304.gif)
(Ⅰ)由圖可知
函數(shù)
的圖像過點(diǎn)(0,3),且區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image306.gif)
得
…………3分
(Ⅱ)依題意
且
解得
所以
…………8分
(Ⅲ)依題意 區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image320.gif)
由
①
若方程
有三個(gè)不同的根,當(dāng)且僅當(dāng) 滿足
②
由 ① ② 得 區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image326.gif)
所以 當(dāng)
時(shí) ,方程
有三個(gè)不同的根。 …………13分
20. (本小題共14分)
已知
分別為橢圓
的左、右焦點(diǎn),直線
過點(diǎn)
且垂直于橢圓的長軸,動(dòng)直線
垂直于直線
,垂足為
,線段
的垂直平分線交
于點(diǎn)M。
(Ⅰ)求動(dòng)點(diǎn)M的軌跡
的方程;
(Ⅱ)過點(diǎn)
作直線交曲線
于兩個(gè)不同的點(diǎn)P和Q,設(shè)=
,若
∈[2,3],求
的取值范圍。
解:(Ⅰ)設(shè)M
,則
,由中垂線的性質(zhì)知區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image334.gif)
|
|=
化簡得
的方程為
…………3分
(另:由
知曲線
是以x軸為對(duì)稱軸,以
為焦點(diǎn),以
為準(zhǔn)線的拋物線
所以
,
則動(dòng)點(diǎn)M的軌跡
的方程為
)
(Ⅱ)設(shè)
,由=
知
①
又由
在曲線
上知
②
由 ① ② 解得
所以
有
…………8分
=
=
=
…………10分
設(shè)
,
∈[2,3],
有
在區(qū)間
上是增函數(shù),
得
進(jìn)而有
區(qū)2009年高三統(tǒng)一練習(xí)(一)%20數(shù)學(xué)文科.files/image371.gif)
所以
的取值范圍是
…………14分
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com