題目列表(包括答案和解析)
如圖,已知點
和單位圓上半部分上的動點B.
(1)若
,求向量
;
(2)求
的最大值.
![]()
【解析】對于這樣的向量的坐標和模最值的求解,利用建立直角坐標系的方法可知。
第一問中,依題意,
,![]()
,![]()
因為
,所以
,即
,
解得
,所以![]()
第二問中,
結(jié)合三角函數(shù)的性質(zhì)得到最值。
(1)依題意,
,
(不含1個或2個端點也對)
,
(寫出1個即可)
因為
,所以
,即
,
解得
,所以
.-
(2)
,![]()
當
時,
取得最大值,![]()
如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出
、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:
(
);
(3)設
,對所有
,
恒成立,求實數(shù)
的取值范圍.
![]()
【解析】第一問利用有
,
得到
第二問證明:①當
時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得![]()
第三問
![]()
.………………………2分
因為函數(shù)
在區(qū)間
上單調(diào)遞增,所以當
時,
最大為
,即
![]()
解:(1)依題意,有
,
,………………4分
(2)證明:①當
時,可求得
,命題成立;
……………2分
②假設當
時,命題成立,即有
,……………………1分
則當
時,由歸納假設及
,
得
.
即![]()
解得
(
不合題意,舍去)
即當
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因為函數(shù)
在區(qū)間
上單調(diào)遞增,所以當
時,
最大為
,即
.……………2分
由題意,有![]()
.
所以,![]()
已知數(shù)列
是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.數(shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列
的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數(shù)列
中的
成等比數(shù)列
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com