題目列表(包括答案和解析)
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 3 |
| 2 |
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設(shè)切點(diǎn)為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點(diǎn)A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
![]()
1.(1)因?yàn)?sub>
,所以學(xué)).files/image388.gif)
又
是圓O的直徑,所以學(xué)).files/image391.gif)
又因?yàn)?sub>
(弦切角等于同弧所對(duì)圓周角)
所以
所以學(xué)).files/image397.gif)
又因?yàn)?sub>
,所以
相似
所以
,即學(xué)).files/image158.gif)
(2)因?yàn)?sub>
,所以
,
因?yàn)?sub>
,所以學(xué)).files/image409.gif)
由(1)知:
。所以學(xué)).files/image413.gif)
所以
,即圓的直徑學(xué)).files/image417.gif)
又因?yàn)?sub>
,即學(xué)).files/image421.gif)
解得學(xué)).files/image423.gif)
2.依題設(shè)有:學(xué)).files/image425.gif)
令
,則學(xué)).files/image429.gif)
學(xué)).files/image431.gif)
學(xué)).files/image429.gif)
學(xué)).files/image433.gif)
學(xué)).files/image435.gif)
學(xué)).files/image435.gif)
學(xué)).files/image438.gif)
3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題
點(diǎn)
的直角坐標(biāo)分別為學(xué)).files/image442.gif)
故
是以
為斜邊的等腰直角三角形,
進(jìn)而易知圓心為
,半徑為
,圓的直角坐標(biāo)方程為
,即學(xué)).files/image453.gif)
將
代入上述方程,得
,即學(xué)).files/image459.gif)
4.假設(shè)
,因?yàn)?sub>
,所以
。
又由
,則
,
所以
,這與題設(shè)矛盾
又若
,這與
矛盾
綜上可知,必有
成立
同理可證
也成立
命題成立
5. 解:由a1=S1,k=
.下面用數(shù)學(xué)歸納法進(jìn)行證明.
1°.當(dāng)n=1時(shí),命題顯然成立;
2°.假設(shè)當(dāng)n=k(k
N*)時(shí),命題成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)=
k(k+1)(k+2)(k+3),
則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)=
k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=
( k+1)(k+1+1)(k+1+2)(k+1+3)
即命題對(duì)n=k+1.成立
由1°, 2°,命題對(duì)任意的正整數(shù)n成立.
6.(1)因?yàn)?sub>
,
,
,所以學(xué)).files/image489.gif)
故事件A與B不獨(dú)立。
(2)因?yàn)?sub>學(xué)).files/image491.gif)
學(xué)).files/image493.gif)
所以學(xué)).files/image495.gif)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com