題目列表(包括答案和解析)
| 3 |
| 3 |
|
| 2 |
| π |
| 4 |
|
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
![]()
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設(shè)平面PCD的法向量
,
則
,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點(diǎn)H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故
或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
在△ABC中,
為三個(gè)內(nèi)角
為三條邊,
且![]()
(I)判斷△ABC的形狀;
(II)若
,求
的取值范圍.
【解析】本題主要考查正余弦定理及向量運(yùn)算
第一問(wèn)利用正弦定理可知,邊化為角得到![]()
![]()
所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。
第二問(wèn)中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,則A=C,∴
是等腰三角形。
(2)
![]()
|
| x2 |
| 4 |
|
| π |
| 2 |
1.(1)因?yàn)?sub>
,所以學(xué)).files/image388.gif)
又
是圓O的直徑,所以學(xué)).files/image391.gif)
又因?yàn)?sub>
(弦切角等于同弧所對(duì)圓周角)
所以
所以學(xué)).files/image397.gif)
又因?yàn)?sub>
,所以
相似
所以
,即學(xué)).files/image158.gif)
(2)因?yàn)?sub>
,所以
,
因?yàn)?sub>
,所以學(xué)).files/image409.gif)
由(1)知:
。所以學(xué)).files/image413.gif)
所以
,即圓的直徑學(xué)).files/image417.gif)
又因?yàn)?sub>
,即學(xué)).files/image421.gif)
解得學(xué)).files/image423.gif)
2.依題設(shè)有:學(xué)).files/image425.gif)
令
,則學(xué)).files/image429.gif)
學(xué)).files/image431.gif)
學(xué)).files/image429.gif)
學(xué)).files/image433.gif)
學(xué)).files/image435.gif)
學(xué)).files/image435.gif)
學(xué)).files/image438.gif)
3.將極坐標(biāo)系內(nèi)的問(wèn)題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問(wèn)題
點(diǎn)
的直角坐標(biāo)分別為學(xué)).files/image442.gif)
故
是以
為斜邊的等腰直角三角形,
進(jìn)而易知圓心為
,半徑為
,圓的直角坐標(biāo)方程為
,即學(xué)).files/image453.gif)
將
代入上述方程,得
,即學(xué)).files/image459.gif)
4.假設(shè)
,因?yàn)?sub>
,所以
。
又由
,則
,
所以
,這與題設(shè)矛盾
又若
,這與
矛盾
綜上可知,必有
成立
同理可證
也成立
命題成立
5. 解:由a1=S1,k=
.下面用數(shù)學(xué)歸納法進(jìn)行證明.
1°.當(dāng)n=1時(shí),命題顯然成立;
2°.假設(shè)當(dāng)n=k(k
N*)時(shí),命題成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)=
k(k+1)(k+2)(k+3),
則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)=
k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=
( k+1)(k+1+1)(k+1+2)(k+1+3)
即命題對(duì)n=k+1.成立
由1°, 2°,命題對(duì)任意的正整數(shù)n成立.
6.(1)因?yàn)?sub>
,
,
,所以學(xué)).files/image489.gif)
故事件A與B不獨(dú)立。
(2)因?yàn)?sub>學(xué)).files/image491.gif)
學(xué)).files/image493.gif)
所以學(xué)).files/image495.gif)
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com