欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知P是橢圓上的點.F1.F2分別是橢圓的左.右焦點.若.則△F1PF2的面積為 查看更多

 

題目列表(包括答案和解析)

已知P是橢圓上的點,F(xiàn)1、F2分別是橢圓的左、右焦點,若,則的面積為(  )

       A、3                  B、2                  C、                    D、

 

 

查看答案和解析>>

已知P是橢圓上的點,F(xiàn)1、F2分別是橢圓的左、右焦點,若∠F1PF2=60°,則△F1PF2的面積為   

查看答案和解析>>

已知P是橢圓上的點,F(xiàn)1、F2分別是橢圓的左、右焦點,若,則的面積為( )
A.3B.2C.D.

查看答案和解析>>

已知點P是橢圓上一點,F(xiàn)1、F2分別是橢圓的左、右焦點,點Q在F1P上,且|PQ|=|PF2|,則Q點坐標為   

查看答案和解析>>

已知P是橢圓+=1(a>b>0)上的點,P與兩焦點F1、F2的連線互相垂直,且點P到兩準線的距離分別為d1=6和d2=12,求橢圓方程.

查看答案和解析>>

一、選擇題:

DDCBA  BBDDA

ycy

11.0     12.(±1,0)    13.1    14.②④      15 706

三、解答題:

16.解:    2分

(Ⅰ)                                                        4分

(Ⅱ)由

單調(diào)遞增區(qū)間為                    8分

(Ⅲ)

                          12分

17.解:(Ⅰ)                        6分

  • <tbody id="8e0ma"><small id="8e0ma"></small></tbody>
    <acronym id="8e0ma"></acronym>
    <rt id="8e0ma"><del id="8e0ma"></del></rt>

      18.解:(Ⅰ)證明:∵PA⊥平面ABCD   ∴PA⊥BD

      ∵ABCD為正方形   ∴AC⊥BD

      ∴BD⊥平面PAC又BD在平面BPD內(nèi),

      ∴平面PAC⊥平面BPD      6分

      (Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,

      ∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

      ∴∠BND為二面角B―PC―D的平面角,

      在△BND中,BN=DN=,BD=

      ∴cos∠BND =                             12分

      解法二:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標系如圖,在平面BCP內(nèi)作BN⊥PC垂足為N連DN,

      ∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

      ∴∠BND為二面角B―PC―D的平面角                                8分

      設(shè)

                                10分

                 12分

      解法三:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,

      <samp id="8e0ma"><dfn id="8e0ma"></dfn></samp>
      •                             10分

        ∵二面角B―PC―D的平面角與∠MAN互補

        ∴二面角B―PC―D的余弦值為                                 12分

        19.解:(Ⅰ)

                  4分

        又∵當(dāng)n = 1時,上式也成立,             6分

        (Ⅱ)              8分

             ①

             ②

        ①-②得:

                                                     12分

        20.解:(Ⅰ)由MAB的中點,

        設(shè)A、B兩點的坐標分別為

        ,

        M點的坐標為                                 4分

        M點的直線l上:

                                                          7分

        (Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個焦點坐標為關(guān)于直線l

        上的對稱點為,

        則有                       10分

        由已知

        ,∴所求的橢圓的方程為                       12分

        21.解:(Ⅰ)∵函數(shù)f(x)圖象關(guān)于原點對稱,∴對任意實數(shù)x

        ,

                                    2分

                             4分

        (Ⅱ)當(dāng)時,圖象上不存在這樣的兩點使結(jié)論成立               5分

        假設(shè)圖象上存在兩點,使得過此兩點處的切線互相垂直,則由

        ,知兩點處的切線斜率分別為:

        此與(*)相矛盾,故假設(shè)不成立                                   9分

        (Ⅲ)證明:

        在[-1,1]上是減函數(shù),且

        ∴在[-1,1]上,時,

            14分