題目列表(包括答案和解析)
已知曲線
的參數方程是
(
是參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
:的極坐標方程是
=2,正方形ABCD的頂點都在
上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,
).
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為
上任意一點,求
的取值范圍.
【命題意圖】本題考查了參數方程與極坐標,是容易題型.
【解析】(Ⅰ)由已知可得
,
,
,
,
即A(1,
),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設
,令
=
,
則
=
=
,
∵
,∴
的取值范圍是[32,52]
,
,
為常數,離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:![]()
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數)上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內,求實數
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
第二問中,
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:![]()
借助于根與系數的關系得到即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
(Ⅱ)設
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:
,
即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
| b2+c2-a2 |
| 2bc |
| a2+c2-b2 |
| 2ac |
| x |
| x+2 |
| x |
| x+2 |
| x |
| 3x+4 |
| x |
| 7x+8 |
| x |
| (2n-1)x+2n |
| x |
| (2n-1)x+2n |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com