題目列表(包括答案和解析)
寫出解二元一次方程組
的一個(gè)算法:第一步:(2)×2+(1)得:x=2;第二步:_________;第三步:輸出x,y的值。
函數(shù)f(x)=
,求f{f[f(3)]}的算法時(shí),下列步驟正確的順序是 。
(1)由3>0,得f(3)=0
(2)由-5<0,得f(-5)=25+2=27,即f{f[f(3)]}=27
(3)由f(0)=-5,得f[f(3)]=f(0)=-5
【解析】如圖:|OB|=b,|O F1|=c.∴kPQ=
,kMN=﹣
.
直線PQ為:y=
(x+c),兩條漸近線為:y=
x.由
,得:Q(
,
);由
,得:P(
,
).∴直線MN為:y-
=﹣
(x-
),
令y=0得:xM=
.又∵|MF2|=|F1F2|=2c,∴3c=xM=
,解之得:
,即e=
.
【答案】B
已知函數(shù)f(x)=cos(2x+
)+
-
+
sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,
],求f(x)的最值;
⑶ 若f(a)=
,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=
cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
第二問中,∵xÎ[0,
],∴2x-
Î[-
,
],
∴當(dāng)2x-
=-
,即x=0時(shí),f(x)min=-
,
當(dāng)2x-
=
,
即x=
時(shí),f(x)max=1
第三問中,(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=![]()
利用構(gòu)造角得到sin2a=sin[(2a-
)+
]
解:⑴ f(x)=
cos2x-
sin2x-cos2x+
sin2x ………2分
=
sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
……………………5分
∴ f(x)的減區(qū)間是[
+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0,
],∴2x-
Î[-
,
], ……………………7分
∴當(dāng)2x-
=-
,即x=0時(shí),f(x)min=-
, ……………………8分
當(dāng)2x-
=
,
即x=
時(shí),f(x)max=1
……………………9分
⑶ f(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-
)+
]
=sin(2a-
)·cos
+cos(2a-
)·sin
………12分
=
×
+
×
=![]()
在平面直角坐標(biāo)系
中,曲線
與坐標(biāo)軸的交點(diǎn)都在圓
上.
(1)求圓
的方程;
(2)若圓
與直線
交于
、
兩點(diǎn),且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用。
(1)曲線
與
軸的交點(diǎn)為(0,1),
與
軸的交點(diǎn)為(3+2
,0),(3-2
,0) 故可設(shè)
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因?yàn)閳A
與直線
交于
、
兩點(diǎn),且
。聯(lián)立方程組得到結(jié)論。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com