題目列表(包括答案和解析)
在極坐標(biāo)系中,圓
:
和直線
相交于
、
兩點(diǎn),求線段
的長(zhǎng)
【解析】本試題主要考查了極坐標(biāo)系與參數(shù)方程的運(yùn)用。先將圓的極坐標(biāo)方程圓
:
即
化為直角坐標(biāo)方程即 ![]()
然后利用直線
即
,得到圓心到直線的距離
,從而利用勾股定理求解弦長(zhǎng)AB。
解:分別將圓
和直線
的極坐標(biāo)方程化為直角坐標(biāo)方程:
圓
:
即
即
,
即
, ∴ 圓心
,
---------3分
直線
即
, ------6分
則圓心
到直線
的距離
,----------8分
則
即所求弦長(zhǎng)為![]()
|
| 2 |
| π |
| 4 |
|
| α |
|
| β |
|
| π |
| 4 |
| ||
| 2 |
|
⊙O1和⊙O2的極坐標(biāo)方程分別為
,
.
⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.
【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡(jiǎn)單的圓冤啊位置關(guān)系的運(yùn)用
(1)中,借助于公式
,
,將極坐標(biāo)方程化為普通方程即可。
(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(I)
,
,由
得
.所以
.
即
為⊙O1的直角坐標(biāo)方程.
同理
為⊙O2的直角坐標(biāo)方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.
解法二: 由
,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com