題目列表(包括答案和解析)
| π |
| 6 |
| 3 |
| 3 |
| 3 |
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓
的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為
、
,拋物線![]()
的準(zhǔn)線與
軸交于
,橢圓
與拋物線
的一個(gè)交點(diǎn)為
.
(1)當(dāng)
時(shí),求橢圓
的方程;
(2)在(1)的條件下,直線
過焦點(diǎn)
,與拋物線
交于
兩點(diǎn),若弦長
等于
的周長,求直線
的方程;
(3)由拋物線弧![]()
和橢圓弧![]()
![]()
(
)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)
為直角頂點(diǎn),另兩個(gè)頂點(diǎn)
落在“拋橢圓”上的等腰直角三角形
,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓
的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為
、
,拋物線![]()
的準(zhǔn)線與
軸交于
,橢圓
與拋物線
的一個(gè)交點(diǎn)為
.
(1)當(dāng)
時(shí),求橢圓
的方程;
(2)在(1)的條件下,直線
過焦點(diǎn)
,與拋物線
交于
兩點(diǎn),若弦長
等于
的周長,求直線
的方程;
(3)由拋物線弧![]()
和橢圓弧![]()
![]()
(
)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)
為直角頂點(diǎn),另兩個(gè)頂點(diǎn)
落在“拋橢圓”上的等腰直角三角形
,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
已知函數(shù)![]()
(1)若函數(shù)
的圖象經(jīng)過P(3,4)點(diǎn),求a的值;
(2)比較
大小,并寫出比較過程;
(3)若
,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)
的圖象經(jīng)過P(3,4)點(diǎn),所以
,解得
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以
.
(2)問中,對底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。
(3)中,由
知,
.,指對數(shù)互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數(shù)
的圖象經(jīng)過
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵當(dāng)
時(shí),
;
當(dāng)
時(shí),
. ……………… 6分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,![]()
當(dāng)
時(shí),
在
上為增函數(shù),∵
,∴
.
即
.當(dāng)
時(shí),
在
上為減函數(shù),
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問中,若對任意
不等式
恒成立,問題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對任意
不等式
恒成立,
問題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com