題目列表(包括答案和解析)
已知函數(shù)
的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說明理由.
【解析】第一問當(dāng)
時(shí),
,則
。
依題意得:
,即
解得
第二問當(dāng)
時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)
時(shí),
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時(shí),
,令
得![]()
當(dāng)
變化時(shí),
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當(dāng)
時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)
時(shí),
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時(shí)
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對(duì)于
,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù)
,曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè)
,證明:對(duì)任意
,
.
1.選修4-1:幾何證明選講
如圖,
的角平分線
的延長線交它的外接圓于點(diǎn)![]()
(Ⅰ)證明:
∽△
;
(Ⅱ)若
的面積
,求
的大小.
證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.
因?yàn)椤?i>AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因?yàn)椤?i>ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.
| 3 |
| x |
| 3 |
| t |
| x |
| t |
| t |
| 4x2-12x-3 |
| 2x+1 |
已知函數(shù)![]()
(1)若函數(shù)
的圖象經(jīng)過P(3,4)點(diǎn),求a的值;
(2)比較
大小,并寫出比較過程;
(3)若
,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)
的圖象經(jīng)過P(3,4)點(diǎn),所以
,解得
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以
.
(2)問中,對(duì)底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。
(3)中,由
知,
.,指對(duì)數(shù)互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數(shù)
的圖象經(jīng)過
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵當(dāng)
時(shí),
;
當(dāng)
時(shí),
. ……………… 6分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,![]()
當(dāng)
時(shí),
在
上為增函數(shù),∵
,∴
.
即
.當(dāng)
時(shí),
在
上為減函數(shù),
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
函數(shù)
是定義在
上的奇函數(shù),且
。
(1)求實(shí)數(shù)a,b,并確定函數(shù)
的解析式;
(2)判斷
在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出
的單調(diào)減區(qū)間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)
是定義在
上的奇函數(shù),且
。
解得
,![]()
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為
,并由此得到當(dāng),x=-1時(shí),
,當(dāng)x=1時(shí),![]()
解:(1)
是奇函數(shù),
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函數(shù)!8分
(3)單調(diào)減區(qū)間為
…………………………………………10分
當(dāng),x=-1時(shí),
,當(dāng)x=1時(shí),
。
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com