題目列表(包括答案和解析)
| (1+x)2 |
| A、0 | B、1 | C、2 | D、3 |
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當(dāng)
時
單調(diào)遞減;當(dāng)
時
單調(diào)遞增,故當(dāng)
時,
取最小值![]()
于是對一切
恒成立,當(dāng)且僅當(dāng)
. 、
令
則![]()
當(dāng)
時,
單調(diào)遞增;當(dāng)
時,
單調(diào)遞減.
故當(dāng)
時,
取最大值
.因此,當(dāng)且僅當(dāng)
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當(dāng)
時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增.故當(dāng)
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數(shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出
取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.
設(shè)函數(shù)
,其中
為自然對數(shù)的底數(shù).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)記曲線
在點
(其中
)處的切線為
,
與
軸、
軸所圍成的三角形面積為
,求
的最大值.
【解析】第一問利用由已知
,所以
,
由
,得
,
所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
第二問中,因為
,所以曲線
在點
處切線為
:
.
切線
與
軸的交點為
,與
軸的交點為
,
因為
,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時,
有最大值,此時
,
解:(Ⅰ)由已知
,所以
,
由
,得
, 所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
即函數(shù)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(Ⅱ)因為
,所以曲線
在點
處切線為
:
.
切線
與
軸的交點為
,與
軸的交點為
,
因為
,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時,
有最大值,此時
,
所以,
的最大值為![]()
(本小題滿分9分)以下是用二分法求方程
的一個近似解(精確度為0.1)的不完整的過程,請補(bǔ)充完整。
|
區(qū)間 |
中點 |
|
區(qū)間長度 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
解:設(shè)函數(shù)
,其圖象在
上是連續(xù)不斷的,且
在
上是單調(diào)遞______(增或減)。先求
_______,
______,
____________。
所以
在區(qū)間____________內(nèi)存在零點
,再填上表:
下結(jié)論:_______________________________。
(可參考條件:
,
;符號填+、-)
| 區(qū)間 | 中點 | 區(qū)間長度 | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com