題目列表(包括答案和解析)
(本小題滿分12分)
有一幅橢圓型彗星軌道圖,長(zhǎng)4cm,高
,如下圖,
已知O為橢圓中心,A1,A2是長(zhǎng)軸兩端點(diǎn),
|
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,寫出橢圓方程,
并求出當(dāng)彗星運(yùn)行到太陽(yáng)正上方時(shí)二者在圖上的距離;
(Ⅱ)直線l垂直于A1A2的延長(zhǎng)線于D點(diǎn),|OD|=4,
設(shè)P是l上異于D點(diǎn)的任意一點(diǎn),直線A1P,A2P分別
交橢圓于M、N(不同于A1,A2)兩點(diǎn),問點(diǎn)A2能否
在以MN為直徑的圓上?試說明理由.
一、選擇題
1~4 BBCA 5~8 ADCD
二、填空題
9、
10、
=
11、
12. 42
; 
13. 2或
14.
15. 
三、解答題
16(本小題滿分12分)
1)
………………4分
2)當(dāng)
單調(diào)遞減,故所求區(qū)間為
………………8分
(3)
時(shí)
………………12分
17(本題滿分14分)
解:(Ⅰ)由函數(shù)
的圖象關(guān)于原點(diǎn)對(duì)稱,得
,………1分
∴
,∴
. ………2分
∴
,∴
. ……………3分
∴
,即
. ………………5分
∴
. ……………………………6分
(Ⅱ)由(Ⅰ)知
,∴
.
由
,∴
. …………………8分








0
+
0


ㄋ
極小
ㄊ
極大
ㄋ
∴
. …………12分
18
證明:(I)在正
中,
是
的中點(diǎn),所以
.
又
,
,
,所以
.
而
,所以
.所以由
,有
.
(II)取正
的底邊
的中點(diǎn)
,連接
,則
.
又
,所以
.
如圖,以點(diǎn)
為坐標(biāo)原點(diǎn),
為
軸,
為
軸,
建立空間直角坐標(biāo)系.設(shè)
,則有
,
,
,
,
,
,
.再設(shè)
是面
的法向量,則有
,即
,可設(shè)
.
又
是面
的法向量,因此
,
所以
,即平面PAB與平面PDC所成二面角為
.
(Ⅲ)由(II)知
,設(shè)
與面
所成角為
,則
所以
與面
所成角的正弦值為
.
19(本題滿分14分)

20解:(I)建立圖示的坐標(biāo)系,設(shè)橢圓方程為
依題意,


橢圓方程為
………………………………2分
F(-1,0)將x=-1代入橢圓方程得
∴當(dāng)彗星位于太陽(yáng)正上方時(shí),二者在圖中的距離為1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),
|