題目列表(包括答案和解析)
在△ABC中,角A、B、C的對邊分別為a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),滿足
=![]()
(Ⅰ)求角B的大;
(Ⅱ)設(shè)
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二問中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-
=3,得k=
.
如圖,在正四棱錐
中,
.
(1)求該正四棱錐的體積
;
(2)設(shè)
為側(cè)棱
的中點,求異面直線
與![]()
所成角
的大。
![]()
【解析】第一問利用設(shè)
為底面正方形
中心,則
為該正四棱錐的高由已知,可求得
,![]()
所以,![]()
第二問設(shè)
為
中點,連結(jié)
、
,
可求得
,
,
,
在
中,由余弦定理,得
.
所以,![]()
如圖,已知平面四邊形
中,
為
的中點,
,
,
且
.將此平面四邊形
沿
折成直二面角
,
連接
,設(shè)
中點為
.![]()
(1)證明:平面
平面
;
(2)在線段
上是否存在一點
,使得
平面
?若存在,請確定點
的位置;若不存在,請說明理由.
(3)求直線
與平面
所成角的正弦值.
如圖
是單位圓
上的點,
分別是圓
與
軸的兩交點,
為正三角形.
![]()
(1)若
點坐標為
,求
的值;
(2)若
,四邊形
的周長為
,試將
表示成
的函數(shù),并求出
的最大值.
【解析】第一問利用設(shè)
∵ A點坐標為
∴
,
(2)中 由條件知 AB=1,CD=2 ,
在
中,由余弦定理得 ![]()
∴ ![]()
∵
∴
,
∴ 當
時,即
當
時 , y有最大值5. .
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com