欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(2)若與的等差中項為18.滿足.求數(shù)列的{}前項和. 查看更多

 

題目列表(包括答案和解析)

等差數(shù)列{an}的前n項和Snpn2-2nq(p,qR),nN

(1)求q的值;

(2)若a1a5的等差中項為18,bn滿足an=2log2bn,求數(shù)列{bn}的前n項和.

查看答案和解析>>

已知等差數(shù)列{an}的前n項和為Sn=pn2-2n+q(p,q∈R),n∈N+
(Ⅰ)求的q值;
(Ⅱ)若a1與a5的等差中項為18,bn滿足an=2log2bn,求數(shù)列{bn}的前n和Tn

查看答案和解析>>

已知等差數(shù)列{an}的前n項和為Sn=pn2-2n+q(p,q∈R),n∈N+
(Ⅰ)求的q值;
(Ⅱ)若a1與a5的等差中項為18,bn滿足an=2log2bn,求數(shù)列{bn}的前n和Tn

查看答案和解析>>

已知等差數(shù)列{an}的前n項和為Sn=pn2-2n+q(p,q∈R),n∈N*,
(1)求q的值;
(2)若a1與a5的等差中項為18,bn滿足an=log2bn,求數(shù)列{bn}的前n項和.

查看答案和解析>>

已知等差數(shù)列{an}的前n項和為Sn=pn2-2n+q(p,q∈R),n∈N+。
(1)求q的值;
(2)若a1與a5的等差中項為18,bn滿足an=2log2bn,求數(shù)列{bn}的前n和Tn。

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

<dl id="uu4ci"></dl>

20080522

 

二、填空題:

13.13   14.   15.       16.②③

三、解答題:

 17.解:(1) f()=sin(2-)+1-cos2(-)

          = 2[sin2(-)- cos2(-)]+1

         =2sin[2(-)-]+1

         = 2sin(2x-) +1  …………………………………………5分

∴ T==π…………………………………………7分

  (2)當(dāng)f(x)取最大值時, sin(2x-)=1,有  2x- =2kπ+ ……………10分

=kπ+    (kZ) …………………………………………11分

∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

 

18.解:(1) :當(dāng)時,,…………………………………………1分

當(dāng)時,.

……………………………………………………………………………………3分

是等差數(shù)列,

??????????…………………………………………5?分

 (2)解:, .…………………………………………7分

,, ……………………………………8分

??????????…………………………………………??9分

.

,,即是等比數(shù)列. ………………………11分

所以數(shù)列的前項和.………………………12分

19.解(1)∵函數(shù)的圖象的對稱軸為

要使在區(qū)間上為增函數(shù),

當(dāng)且僅當(dāng)>0且……………………2分

=1則=-1,

=2則=-1,1

=3則=-1,1,;………………4分

∴事件包含基本事件的個數(shù)是1+2+2=5

∴所求事件的概率為………………6分

(2)由(1)知當(dāng)且僅當(dāng)>0時,

函數(shù)上為增函數(shù),

依條件可知試驗的全部結(jié)果所構(gòu)成的區(qū)域為

構(gòu)成所求事件的區(qū)域為三角形部分。………………8分

………………10分

∴所求事件的概率為………………12分

20解:(1):作,連

的中點,連、,

則有……………………………4分

…………………………6分

(2)設(shè)為所求的點,作,連.則………7分

就是與面所成的角,則.……8分

設(shè),易得

……………………………………10分

解得………11分

故線段上存在點,且時,與面角. …………12分

 

21.解(1)由

    

過點(2,)的直線方程為,即

   (2)由

在其定義域(0,+)上單調(diào)遞增。

只需恒成立

①由上恒成立

,∴,∴,∴…………………………10分

綜上k的取值范圍為………………12分

22.解:(1)由題意橢圓的離心率

∴橢圓方程為………………3分

又點(1,)在橢圓上,∴=1

∴橢圓的方程為………………6分

   (2)若直線斜率不存在,顯然不合題意;

則直線l的斜率存在!7分

設(shè)直線,直線l和橢交于,

依題意:………………………………9分

由韋達定理可知:………………10分

從而………………13分

求得符合

故所求直線MN的方程為:………………14分