欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(1)若.求過點(2.)的直線方程, 查看更多

 

題目列表(包括答案和解析)

過點(1,0)直線l交拋物線y2=4x于A(x1,y1),B(x2,y2)兩點,拋物線的頂點是O.
(。┳C明:數(shù)學公式為定值;
(ⅱ)若AB中點橫坐標為2,求AB的長度及l(fā)的方程.

查看答案和解析>>

過點(1,0)直線l交拋物線y2=4x于A(x1,y1),B(x2,y2)兩點,拋物線的頂點是O.
(。┳C明:為定值;
(ⅱ)若AB中點橫坐標為2,求AB的長度及l(fā)的方程.

查看答案和解析>>

過點A(-4,0)向橢圓
x2
a2
+
y2
b2
=1(a>b>0)
引兩條切線,切點分別為B,C,且△ABC為正三角形.
(Ⅰ)求ab最大時橢圓的方程;
(Ⅱ)對(Ⅰ)中的橢圓,若其左焦點為F,過F的直線l與y軸交于點M,與橢圓的一個交點為Q,且|
MQ
|=2|
QF
|
,求直線l的方程.

查看答案和解析>>

已知直線方程為(2+m)x+(1-2m)y+4-3m=0.
(Ⅰ)證明:直線恒過定點M;
(Ⅱ)若直線分別與x軸、y軸的負半軸交于A,B兩點,求△AOB面積的最小值及此時直線的方程.

查看答案和解析>>

過點M(3,0)作直線l與圓x2+y2=25交于A、B兩點.
(1)若點P是線段AB的中點,求點P的軌跡方程;
(2)求直線l的傾斜角為何值時△AOB的面積最大,并求這個最大值.

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

  • <td id="22u6c"></td>
  • <menu id="22u6c"></menu>
  • 20080522

     

    二、填空題:

    13.13   14.   15.       16.②③

    三、解答題:

     17.解:(1) f()=sin(2-)+1-cos2(-)

              = 2[sin2(-)- cos2(-)]+1

             =2sin[2(-)-]+1

             = 2sin(2x-) +1  …………………………………………5分

    ∴ T==π…………………………………………7分

      (2)當f(x)取最大值時, sin(2x-)=1,有  2x- =2kπ+ ……………10分

    =kπ+    (kZ) …………………………………………11分

    ∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

     

    18.解:(1) :當時,,…………………………………………1分

    時,.

    ……………………………………………………………………………………3分

    是等差數(shù)列,

    ??????????…………………………………………5?分

     (2)解:, .…………………………………………7分

    ,, ……………………………………8分

    ??????????…………………………………………??9分

    .

    ,,即是等比數(shù)列. ………………………11分

    所以數(shù)列的前項和.………………………12分

    19.解(1)∵函數(shù)的圖象的對稱軸為

    要使在區(qū)間上為增函數(shù),

    當且僅當>0且……………………2分

    =1則=-1,

    =2則=-1,1

    =3則=-1,1,;………………4分

    ∴事件包含基本事件的個數(shù)是1+2+2=5

    ∴所求事件的概率為………………6分

    (2)由(1)知當且僅當>0時,

    函數(shù)上為增函數(shù),

    依條件可知試驗的全部結(jié)果所構(gòu)成的區(qū)域為

    構(gòu)成所求事件的區(qū)域為三角形部分!8分

    ………………10分

    ∴所求事件的概率為………………12分

    20解:(1):作,連

    的中點,連、,

    則有……………………………4分

    …………………………6分

    (2)設為所求的點,作,連.則………7分

    就是與面所成的角,則.……8分

    ,易得

    ……………………………………10分

    解得………11分

    故線段上存在點,且時,與面角. …………12分

     

    21.解(1)由

        

    過點(2,)的直線方程為,即

       (2)由

    在其定義域(0,+)上單調(diào)遞增。

    只需恒成立

    ①由上恒成立

    ,∴,∴,∴…………………………10分

    綜上k的取值范圍為………………12分

    22.解:(1)由題意橢圓的離心率

    ∴橢圓方程為………………3分

    又點(1,)在橢圓上,∴=1

    ∴橢圓的方程為………………6分

       (2)若直線斜率不存在,顯然不合題意;

    則直線l的斜率存在!7分

    設直線,直線l和橢交于,。

    依題意:………………………………9分

    由韋達定理可知:………………10分

    從而………………13分

    求得符合

    故所求直線MN的方程為:………………14分