欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

在區(qū)間上單調(diào)遞增③是函數(shù)的圖象的一條對稱軸.其中正確的命題個數(shù) A.0 B.1 C.2 D.3 查看更多

 

題目列表(包括答案和解析)

右圖是函數(shù)的圖象,給出下列命題:

 
    ①—3是函數(shù)的極值點;

    ②—1是函數(shù)的最小值點;

    ③處切線的斜率小于零;

    ④在區(qū)間(—3,1)上單調(diào)遞增。

    則正確命題的序號是                                                  (    )

    A.①②           B.①④           C.②③           D.③④

 

查看答案和解析>>

右圖是函數(shù)的圖象,給出下列命題:

 
   ①—3是函數(shù)的極值點;
②—1是函數(shù)的最小值點;
處切線的斜率小于零;
在區(qū)間(—3,1)上單調(diào)遞增。
則正確命題的序號是                                                 (   )
A.①②B.①④C.②③D.③④

查看答案和解析>>

命題

①函數(shù)的圖象與直線最多有一個交點;

②函數(shù)在區(qū)間上單調(diào)遞增,則;

③若,當時,,則

④函數(shù)的值域為R,則實數(shù)的取值范圍是;

⑤函數(shù)的圖象關(guān)于軸對稱;

以上命題正確的個數(shù)有(   )個

A、2         B、3         C、4         D、5

 

查看答案和解析>>

命題①函數(shù)的圖象與直線最多有一個交點;

②函數(shù)在區(qū)間上單調(diào)遞增,則

③若,當時,,則

④函數(shù)的值域為R,則實數(shù)的取值范圍是

A. 1        B.  2         C.  3         D.  4

 

查看答案和解析>>

命題①函數(shù)的圖象與直線最多有一個交點;
②函數(shù)在區(qū)間上單調(diào)遞增,則;
③若,當時,,則;
④函數(shù)的值域為R,則實數(shù)的取值范圍是
A.1B. 2C. 3D. 4

查看答案和解析>>

一、選擇題(每題5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答題(17―21題每小題12分,22題14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

當且僅當時,△ABC面積取最大值,最大值為.

18.解:(Ⅰ)依題意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E為直二面角,且, 平面ABE.

(Ⅱ)連結(jié)BD交AC于C,連結(jié)FG,

∵正方形ABCD邊長為2,∴BG⊥AC,BG=,

平面ACE,

(Ⅲ)過點E作交AB于點O. OE=1.

∵二面角D―AB―E為直二面角,∴EO⊥平面ABCD.

設(shè)D到平面ACE的距離為h,

平面BCE, 

<i id="fahxa"><legend id="fahxa"><dfn id="fahxa"></dfn></legend></i>
    <track id="fahxa"></track>

        解法二:(Ⅰ)同解法一.

        (Ⅱ)以線段AB的中點為原點O,OE所在直

        線為x軸,AB所在直線為y軸,過O點平行

        于AD的直線為z軸,建立空間直角坐標系

        O―xyz,如圖.

        面BCE,BE面BCE, ,

        的中點,

         設(shè)平面AEC的一個法向量為

        解得

               令是平面AEC的一個法向量.

               又平面BAC的一個法向量為

               ∴二面角B―AC―E的大小為

        (III)∵AD//z軸,AD=2,∴,

        ∴點D到平面ACE的距離

        20.解:(1)

        ;

        (2)

        ,,

        ,有最大值;即每年建造12艘船,年利潤最大(8分)

        (3),(11分)

        所以,當時,單調(diào)遞減,所以單調(diào)區(qū)間是,且

        21.解:(I)∵,且

        ①④

        又由在處取得極小值-2可知②且

        將①②③式聯(lián)立得。   (4分)

        同理由

        的單調(diào)遞減區(qū)間是[-1,1], 單調(diào)遞增區(qū)間是(-∞,1   (6分)

        (II)由上問知:,∴。

        又∵。∴!。∴

        ,∴>0。∴。(8分)

        ∴當時,的解集是,

        顯然A不成立,不滿足題意。

        ,且的解集是。   (10分)

        又由A。解得。(12分)

        22.解:(1)設(shè)M(x,y)是所求曲線上的任意一點,Px1,y1)是方程x2 +y2 =4的圓上的任意一點,則

            則有:得,

            軌跡C的方程為

           (1)當直線l的斜率不存在時,與橢圓無交點.

            所以設(shè)直線l的方程為y = k(x+2),與橢圓交于A(x1,y1)、B(x2,y2)兩點,N點所在直線方程為

            由

            由△=

            即 …   

            ,∴四邊形OANB為平行四邊形

            假設(shè)存在矩形OANB,則,即

            即,

            于是有    得 … 設(shè),

        即點N在直線上.

         ∴存在直線l使四邊形OANB為矩形,直線l的方程為