欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

C.當(dāng)時.在x軸上 D.當(dāng)時.在y軸上 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,我把由兩條射線AE,BF和以AB為直徑的半圓所組成的圖形叫作圖形C(注:不含AB線段).已知A(-1,0),B(1,0),AE∥BF,且半圓與y軸的交點(diǎn)D在射線AE的反向延長線上.
(1)求兩條射線AE,BF所在直線的距離;
(2)當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有一個公共點(diǎn)時,寫出b的取值范圍;當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有兩個公共點(diǎn)時,寫出b的取值范圍.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(-4,0),點(diǎn)P在射線AB上運(yùn)動,連結(jié)CP與y軸交于點(diǎn)D,連結(jié)BD.過P,D,B三點(diǎn)作⊙Q與y軸的另一個交點(diǎn)為E,延長DQ交⊙Q于點(diǎn)F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點(diǎn)P在線段AB(不包括A,B兩點(diǎn))上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點(diǎn)P在運(yùn)動過程中,是否存在以B,D,F(xiàn)為頂點(diǎn)的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點(diǎn)P的坐標(biāo):如果不存在,請說明理由.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個動點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.

(1)求點(diǎn)B的軌跡方程;
(2)當(dāng)點(diǎn)D位于y軸的正半軸上時,求直線PQ的方程;
(3)若G是圓C上的另一個動點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

如圖,在空間直角坐標(biāo)系中,已知直三棱柱的頂點(diǎn)A在x軸上,AB平行于y軸,側(cè)棱AA1平行于z軸.當(dāng)頂點(diǎn)C在y軸正半軸上運(yùn)動時,以下關(guān)于此直三棱柱三視圖的表述正確的是( 。
A.該三棱柱主視圖的投影不發(fā)生變化
B.該三棱柱左視圖的投影不發(fā)生變化
C.該三棱柱俯視圖的投影不發(fā)生變化
D.該三棱柱三個視圖的投影都不發(fā)生變化
精英家教網(wǎng)

查看答案和解析>>

如圖,在平面直角坐標(biāo)系xoy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個動點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.
(1)求點(diǎn)B的軌跡方程;
(2)當(dāng)D位于y軸的正半軸上時,求直線PQ的方程;
(3)若G是圓上的另一個動點(diǎn),且滿足FG⊥FE.記線段EG的中點(diǎn)為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

一、選擇題(每題5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答題(17―21題每小題12分,22題14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

當(dāng)且僅當(dāng)時,△ABC面積取最大值,最大值為.

18.解:(Ⅰ)依題意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E為直二面角,且, 平面ABE.

<acronym id="tob4t"><strike id="tob4t"></strike></acronym>

    (Ⅱ)連結(jié)BD交AC于C,連結(jié)FG,

    ∵正方形ABCD邊長為2,∴BG⊥AC,BG=,

    平面ACE,

    (Ⅲ)過點(diǎn)E作交AB于點(diǎn)O. OE=1.

    ∵二面角D―AB―E為直二面角,∴EO⊥平面ABCD.

    設(shè)D到平面ACE的距離為h,

    平面BCE, 

    <acronym id="tob4t"></acronym>
      <small id="tob4t"><strike id="tob4t"></strike></small>

      解法二:(Ⅰ)同解法一.

      (Ⅱ)以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直

      線為x軸,AB所在直線為y軸,過O點(diǎn)平行

      于AD的直線為z軸,建立空間直角坐標(biāo)系

      O―xyz,如圖.

      面BCE,BE面BCE, ,

      的中點(diǎn),

       設(shè)平面AEC的一個法向量為,

      解得

             令是平面AEC的一個法向量.

             又平面BAC的一個法向量為

             ∴二面角B―AC―E的大小為

      (III)∵AD//z軸,AD=2,∴,

      ∴點(diǎn)D到平面ACE的距離

      20.解:(1)

      (2)

      ,,

      ,有最大值;即每年建造12艘船,年利潤最大(8分)

      (3),(11分)

      所以,當(dāng)時,單調(diào)遞減,所以單調(diào)區(qū)間是,且

      21.解:(I)∵,且

      ①④

      又由在處取得極小值-2可知②且

      將①②③式聯(lián)立得。   (4分)

      同理由

      的單調(diào)遞減區(qū)間是[-1,1], 單調(diào)遞增區(qū)間是(-∞,1   (6分)

      (II)由上問知:,∴

      又∵。∴。∴!

      ,∴>0!。(8分)

      ∴當(dāng)時,的解集是

      顯然A不成立,不滿足題意。

      ,且的解集是。   (10分)

      又由A。解得。(12分)

      22.解:(1)設(shè)M(xy)是所求曲線上的任意一點(diǎn),Px1,y1)是方程x2 +y2 =4的圓上的任意一點(diǎn),則

          則有:得,

          軌跡C的方程為

         (1)當(dāng)直線l的斜率不存在時,與橢圓無交點(diǎn).

          所以設(shè)直線l的方程為y = k(x+2),與橢圓交于A(x1,y1)、B(x2,y2)兩點(diǎn),N點(diǎn)所在直線方程為

          由

          由△=

          即 …   

          ,∴四邊形OANB為平行四邊形

          假設(shè)存在矩形OANB,則,即,

          即

          于是有    得 … 設(shè),

      即點(diǎn)N在直線上.

       ∴存在直線l使四邊形OANB為矩形,直線l的方程為