欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(A) (B) (C) (D)1 查看更多

 

題目列表(包括答案和解析)

已知向量,,那么=    

    (A)         (B)        (C)     (D)1

 

查看答案和解析>>

(1)如圖(a)(b)(c)(d)為四個平面圖,數(shù)一數(shù),每個平面圖各有多少個頂點?多少條邊?它們將平面圍成了多少個區(qū)域?

 

頂點數(shù)

邊數(shù)

區(qū)域數(shù)

(a)

 

 

 

(b)

 

 

 

(c)

 

 

 

(d)

 

 

 

 

(2)觀察上表,推斷一個平面圖形的頂點數(shù)、邊數(shù)、區(qū)域數(shù)之間有什么關(guān)系?

(3)現(xiàn)已知某個平面圖有999個頂點,且圍成了999個區(qū)域,試根據(jù)以上關(guān)系確定這個平面圖有多少條邊?

查看答案和解析>>

(A)(不等式選做題)
若關(guān)于x的不等式|a|≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個三等分點,直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點F,則AF的長為
2
3
3
2
3
3

(C)(坐標(biāo)系與參數(shù)方程選做題) 
在已知極坐標(biāo)系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實數(shù)a=
2或-8
2或-8

查看答案和解析>>

(A)(1)與(2)             (B)(2)與(3) 

(C)(3)與(4)             (D)(2)與(4)

 

查看答案和解析>>

(A)選修4-1:幾何證明選講
如圖,⊙O的割線PAB交⊙O于A,B兩點,割線PCD經(jīng)過圓心交⊙O于C,D兩點,若PA=2,AB=4,PO=5,則⊙O的半徑長為
13
13


(B)選修4-4:坐標(biāo)系與參數(shù)方程
參數(shù)方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中當(dāng)t為參數(shù)時,化為普通方程為
x2-y2=1
x2-y2=1

(C)選修4-5:不等式選講
不等式|x-2|-|x+1|≤a對于任意x∈R恒成立,則實數(shù)a的集合為
{a|a≥3}
{a|a≥3}

查看答案和解析>>

一、選擇題:本小題共10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

C

A

C

B

B

A

A

二、填空題:本小題11―13題必答, 14、15小題中選答1題,若全答只計14題得分,共20分.

11.  35             12.            13. 

14.                15.    

三、解答題:共80分.

16題(本題滿分13分)

解:(1)要使f(x)有意義,必須,即

得f(x)的定義域為………………………………7分

  (2)因f(x)的定義域為,關(guān)于原點不對稱,所以

f(x)為非奇非偶函數(shù). ……………………………………………13分

17題(本題滿分13分)

解:(1)當(dāng)且僅當(dāng)時,方程組有唯一解.因的可能情況為三種情況………………………………3分

        而先后兩次投擲骰子的總事件數(shù)是36種,所以方程組有唯一解的概率

        ……………………………………………………………………6分

(2)因為方程組只有正數(shù)解,所以兩直線的交點在第一象限,由它們的圖像可知

          ………………………………………………………………9分

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程組只有正數(shù)解的概率………………………………………………………………………13分

 

18題(本題滿分14分)

(1)    證明:由題設(shè)知,F(xiàn)G=GA,F(xiàn)H=HD

             所以GH.

             又BC,故GHBC

             所以四邊形BCHG是平等四邊形!4分

(2)    C、D、F、E四點共面。理由如下:

由BE,G是FA的中點知,

BEGF,所以EF//BG。……………………6分

由(1)知BG//CH,故EF//CH,故F、E、C、H共面,又點D在直線FH上,

所以C、D、F、E四點共面!8分

(3)    證明:連結(jié)EG,由AB=BE,BEAG,及,知ABEG是正方形,

             故BG⊥EA。由題設(shè)知,F(xiàn)A、AD、AB兩兩垂直,故AD⊥平面FABE,因此AD⊥BG,又EA∩AD=A,所以BG⊥平面ADE。

             由(1)知,CH//BG,所以CH⊥平面ADE,由(2)知H平面CDE,故CH平面CDE,得平面ADE⊥平面CDE。……………………14分

 

19題(本題滿分14分)

解:(1)由已知得,解得:……………………4分

所求橢圓方程為………………………………………………6分

(2)因點即A(3,0),設(shè)直線PQ方程為………………8分

則由方程組,消去y得:

設(shè)點……………………11分

,得

,代入上式得

,故

解得:,所求直線PQ方程為……………………14分

20題(本題滿分14分)

解:(1)函數(shù)f(x)的定義域為,…………2分

①當(dāng)時,>0,f(x)在上遞增.………………………………4分

②當(dāng)時,令解得:

,因(舍去),故在<0,f(x)遞減;在上,>0,f(x)遞增.……………8分

(2)由(1)知內(nèi)遞減,在內(nèi)遞增.

……………………………………11分

,又因

,得………………14分

21題(本題滿分12分)

解:(1)由,可得

………………………………3分

所以是首項為0,公差為1的等差數(shù)列.

所以……………………6分

(2)解:設(shè)……①

……②

當(dāng)時,①②得

…………9分

這時數(shù)列的前n項和

當(dāng)時,,這時數(shù)列的前n項和

…………………………………………12分

 

 

 

 


同步練習(xí)冊答案