題目列表(包括答案和解析)
已知
,函數![]()
(1)當
時,求函數
在點(1,
)的切線方程;
(2)求函數
在[-1,1]的極值;
(3)若在
上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中
,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區(qū)間
上為增函數,則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數
的取值范圍是(![]()
,
)
甲乙兩公司生產同一種新產品,經測算,對于函數
,
,及任意的
,當甲公司投入
萬元作宣傳時,乙公司投入的宣傳費若小于
萬元,則乙公司有失敗的危險,否則無失敗的危險;當乙公司投入
萬元作宣傳時,甲公司投入的宣傳費若小于
萬元,則甲公司有失敗的危險,否則無失敗的危險. 設甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標系,試回答以下問題:
(1)請解釋
;
(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應投入多少宣傳費?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入
萬元,乙在上述策略下,投入最少費用
;而甲根據乙的情況,調整宣傳費為
;同樣,乙再根據甲的情況,調整宣傳費為![]()
如此得當甲調整宣傳費為
時,乙調整宣傳費為
;試問是否存在
,
的值,若存在寫出此極限值(不必證明),若不存在,說明理由.
甲乙兩公司生產同一種新產品,經測算,對于函數
,
,及任意的
,當甲公司投入
萬元作宣傳時,乙公司投入的宣傳費若小于
萬元,則乙公司有失敗的危險,否則無失敗的危險;當乙公司投入
萬元作宣傳時,甲公司投入的宣傳費若小于
萬元,則甲公司有失敗的危險,否則無失敗的危險. 設甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標系,試回答以下問題:
(1)請解釋
;w.w.w.k.s.5.u.c.o.m
(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應投入多少宣傳費?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入
萬元,乙在上述策略下,投入最少費用
;而甲根據乙的情況,調整宣傳費為
;同樣,乙再根據甲的情況,調整宣傳費為![]()
如此得當甲調整宣傳費為
時,乙調整宣傳費為
;試問是否存在
,
的值,若存在寫出此極限值(不必證明),若不存在,說明理由.
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com