欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

個法向量為 . 查看更多

 

題目列表(包括答案和解析)

用向量方法可以證明:若P為正三角形內(nèi)切圓上任意一點(diǎn),則點(diǎn)P到三角形三個頂點(diǎn)距離的平方和為定值.請你針對這個問題進(jìn)行研究,寫出一個推廣后的正確命題:
①②③④
①②③④

①若P為正三角形外接圓上任意一點(diǎn),則點(diǎn)P到三角形三個頂點(diǎn)距離的平方和為定值.
②若正三角形A1A2A3外接圓的圓心為O,半徑為R,P為平面上任意一點(diǎn),則|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2
③若P為正多邊形內(nèi)切圓上任意一點(diǎn),則點(diǎn)P到各個頂點(diǎn)距離的平方和為定值.
④若P為正多邊形外接圓上任意一點(diǎn),則點(diǎn)P到各個頂點(diǎn)距離的平方和為定值.

查看答案和解析>>

________叫向量的加法.從幾何上看,求向量加法常借助于兩個圖形,分別是 ________和 ________;與這兩個圖形相對應(yīng)向量加法稱為 ________法則和 ________法則.

查看答案和解析>>

平面α的一個法向量為
v
1=(1,2,1),平面β的一個法向量為為
v
2=(-2,-4,10),則平面α與平面β(  )
A.平行B.垂直C.相交D.不確定

查看答案和解析>>

平面α的一個法向量為1=(1,2,1),平面β的一個法向量為為2=(-2,-4,10),則平面α與平面β( )
A.平行
B.垂直
C.相交
D.不確定

查看答案和解析>>

平面α的一個法向量為
n
=(1,-
3
,0)
,則y軸與平面α所成的角的大小為( 。
A.
π
6
B.
π
3
C.
π
4
D.
6

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

15

答案

A

C

B

      20090116

      三、解答題:(12’+14’+15’+16’+22’=79’)

      16.解:由條件,可得,故左焦點(diǎn)的坐標(biāo)為

      設(shè)為橢圓上的動點(diǎn),由于橢圓方程為,故

      因?yàn)?sub>,所以

      ,

      由二次函數(shù)性質(zhì)可知,當(dāng)時,取得最小值4.

      所以,的模的最小值為2,此時點(diǎn)坐標(biāo)為

      17.解:(1)當(dāng)時,;

      當(dāng)時,;

      當(dāng)時,;(不單獨(dú)分析時的情況不扣分)

      當(dāng)時,

      (2)由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;

      當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集.

      因?yàn)?sub>,當(dāng)且僅當(dāng)時取等號,

      所以當(dāng)時,集合的元素個數(shù)最少.

      此時,故集合

      18.(本題滿分15分,1小題6分,第2小題9

      解:

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       (2)解:如圖所示.由,,則

      所以,四棱錐的體積為

      19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

      由此可得,;

      由規(guī)律②可知,,

      又當(dāng)時,,

      所以,,由條件是正整數(shù),故取

          綜上可得,符合條件.

      (2) 解法一:由條件,,可得

      ,

      ,

      因?yàn)?sub>,,所以當(dāng)時,,

      ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      解法二:列表,用計(jì)算器可算得

      月份

      6

      7

      8

      9

      10

      11

      人數(shù)

      383

      463

      499

      482

      416

      319

      故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      20.解:(1)依條件得: 則無窮等比數(shù)列各項(xiàng)的和為:

           ;

        (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:,

      ,即    

       則 .

      所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為,

      其通項(xiàng)公式為.

      解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

      ………… ①

      又若,則對每一

      都有………… ②

      從①、②得;

      ;

      因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無窮等比子

      數(shù)列,通項(xiàng)公式為

      (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

      問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

      因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋分?jǐn)?shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

      【以上解答屬于層級3,可得設(shè)計(jì)分4分,解答分6分】

      問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

      ………… ①

      ,則①,矛盾;若,則①

      ,矛盾;故必有,不妨設(shè),則

      ………… ②

      1當(dāng)時,②,等式左邊是偶數(shù),

      右邊是奇數(shù),矛盾;

      2當(dāng)時,②

      兩個等式的左、右端的奇偶性均矛盾;

      綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

      【以上解答屬于層級4,可得設(shè)計(jì)分5分,解答分7分】

      問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

      ,

      顯然當(dāng)時,上述等式成立。例如取,得:

      第一個子數(shù)列:,各項(xiàng)和;第二個子數(shù)列:,

      各項(xiàng)和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍。

      【以上解答屬層級3,可得設(shè)計(jì)分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個層級評分】

      問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):存在。

      問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):不存在.

      【以上問題四、問題五等都屬于層級4的問題設(shè)計(jì),可得設(shè)計(jì)分5分。解答分最高7分】