題目列表(包括答案和解析)
已知數(shù)列
滿足
,![]()
(1)求證:數(shù)列
是等比數(shù)列;
(2)求數(shù)列
的通項和前n項和
.
【解析】第一問中,利用
,得到
從而得證
第二問中,利用∴
∴
分組求和法得到結論。
解:(1)由題得
………4分
……………………5分
∴數(shù)列
是以2為公比,2為首項的等比數(shù)列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
如圖,在直三棱柱
中,底面
為等腰直角三角形,
,
為棱
上一點,且平面
平面
.
(Ⅰ)求證:
點為棱
的中點;
(Ⅱ)判斷四棱錐
和
的體積是否相等,并證明。
![]()
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知
,
面
。由此知:
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點
作
于
點,取
的中點
,連
。
面
面
且相交于
,面
內的直線
,
面
!3分
又
面
面
且相交于
,且
為等腰三角形,易知
,
面
。由此知:
,從而有
共面,又易知
面
,故有
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
…6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區(qū)間
上單調遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當
,即
時,同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數(shù)
的圖象恒在直線
下方.
在
中,
是三角形的三內角,
是三內角對應的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角
的大;
(Ⅱ)若
,求
的值.
【解析】第一問中利用依題意
且
,故![]()
第二問中,由題意
又由余弦定理知
![]()
,得到
,所以
,從而得到結論。
(1)依題意
且
,故
……………………6分
(2)由題意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
在數(shù)列
中,
,當
時,
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)設
,求數(shù)列
的前
項和
.
【解析】本試題主要考查了數(shù)列的通項公式的求和 綜合運用。第一問中 ,利用
,得到
且
,故故
為以1為首項,公差為2的等差數(shù)列. 從而
![]()
第二問中,![]()
![]()
![]()
由
及
知
,從而可得
且![]()
故
為以1為首項,公差為2的等差數(shù)列.
從而
……………………6分
(2)![]()
……………………9分
![]()
![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com