欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

22.已知 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點,又過、作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

已知等差數(shù)列{}的公差為d(d0),等比數(shù)列{}的公比為q(q>1)。設(shè)=+…..+ ,=-+…..+(-1 ,n     

(1)若== 1,d=2,q=3,求  的值;

(2)若=1,證明(1-q)-(1+q)=,n;     

(3)若正數(shù)n滿足2nq,設(shè)的兩個不同的排列, ,   證明。

查看答案和解析>>

(本小題滿分14分)已知二次函數(shù)滿足條件:=,且方程=有等根。

(Ⅰ)求的解析式;

(Ⅱ)是否存在實數(shù)m、n(m<n),使的定義域和值域分別是[m,n]和[3m,3n]?如果存在,求出m、n的值;若不存在,說明理由。

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

20080422

第Ⅱ卷(非選擇題  共90分)

二、填空題

13.2    14.3   15.   16.①③④

三、解答題

17.解:(1)由正弦定理得,…………………………………….….3分

   ,,因此!.6分

(2)的面積,,………..8分

,所以由余弦定理得….10分

。…………………………………………………………………………….12分

文本框:  18.方法一:                

(1)證明:連結(jié)BD,

∵D分別是AC的中點,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2,

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設(shè)點E到平面PBC的距離為h.

∵VP―EBC=VE―PBC,

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

(2)解:解:取AB的中點E,連結(jié)DE、PE,

過點D作AB的平行線交BC于點F,以D為

    DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

    則D(0,0,0),P(0,0,),

    E(),B=(

    設(shè)上平面PAB的一個法向量,

    則由

    這時,……………………6分

    顯然,是平面ABC的一個法向量.

    ∴二面角P―AB―C的大小是……………………8分

    (3)解:

    設(shè)平面PBC的一個法向量,

    是平面PBC的一個法向量……………………10分

    ∴點E到平面PBC的距離為………………12分

    19.解:

    20.解(1)由已知,拋物線,焦點F的坐標(biāo)為F(0,1)………………1分

    當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

    當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

    由已知可得………5分

    解得無意義.

    因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

    (2)由已知可設(shè)直線l的方程為……………………8分

    則AB所在直線為……………………9分

    代入拋物線方程………………①

    的中點為

    代入直線l的方程得:………………10分

    又∵對于①式有:

    解得m>-1,

    l在y軸上截距的取值范圍為(3,+)……………………12分

    21.解:(1)在………………1分

    當(dāng)兩式相減得:

    整理得:……………………3分

    當(dāng)時,,滿足上式,

    (2)由(1)知

    ………………8分

    ……………………………………………12分

    22.解:(1)…………………………1分

    是R上的增函數(shù),故在R上恒成立,

    在R上恒成立,……………………2分

    …………3分

    故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

    ∴當(dāng)

    的最小值………………6分

    亦是R上的增函數(shù)。

    故知a的取值范圍是……………………7分

    (2)……………………8分

    ①當(dāng)a=0時,上單調(diào)遞增;…………10分

    可知

    ②當(dāng)

    即函數(shù)上單調(diào)遞增;………………12分

    ③當(dāng)時,有

    即函數(shù)上單調(diào)遞增!14分