題目列表(包括答案和解析)
(12分)集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
①函數(shù)f(x)的定義域是[0,+∞);
②函數(shù)f(x)的值域是[-2,4);
③函數(shù)f(x)在[0,+∞)上是增函數(shù),試分別探究下列兩小題:
(1)判斷函數(shù)f1(x)=
-2(x≥0)及f2(x)=4-6·
x(x≥0)是否屬于集合A?并簡(jiǎn)要說明理由;
(2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對(duì)于任意的x≥0恒成立?若不成立,為什么?若成立,請(qǐng)說明你的結(jié)論.
(1)證明定義在R上的二次函數(shù)f(x)=ax2+bx+c(a<0)是凸函數(shù);
(2)對(duì)于(1)中的二次函數(shù)f(x)=ax2+bx+c(a<0),若|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,求|f(4)|取得最大值時(shí)函數(shù)y=f(x)的解析式.
仔細(xì)閱讀下面問題的解法:
設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2. ∴實(shí)數(shù)a的取值范圍為a<2.
研究學(xué)習(xí)以上問題的解法,請(qǐng)解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=
,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
(3)若B ={x|
>2x+a–5},且對(duì)于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。
已知冪函數(shù)y=f(x)=
(p∈Z)在(0,+∞)上是增函數(shù),且是偶函數(shù).
(1)求p的值并寫出相應(yīng)的函數(shù)f(x);
(2)對(duì)于(1)中求得的函數(shù)f(x),設(shè)函數(shù)g(x)=-qf(f(x))+(2q-1)f(x)+1.
試問:是否存
在實(shí)數(shù)q(q<0),使得g(x)在區(qū)間(-∞,-4]上是減函數(shù),且在(-4,0)上是增函數(shù);若存在,請(qǐng)求出來,若
不存在,說明理由.
(1)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價(jià)最。
(2)對(duì)于(1)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價(jià)最;
(3)在AB上是否存在兩個(gè)不同的點(diǎn)D′,E′,使沿折線.PD′E′O修建公路的總造價(jià)小于(2)中得到的最小總造價(jià)?證明你的結(jié)論.
![]()
a)
第19題圖
(文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.
(1)求AC1與BC所成角的余弦值;
(2)求二面角C1-BD-C的大小;
(3)設(shè)M是BD上的點(diǎn),當(dāng)DM為何值時(shí),D1M⊥平面A1C1D?并證明你的結(jié)論.
![]()
第19題圖
一、選擇題(5分×12=60分)
B B D D C B B D D C A A
二、填空題(4分x 4=16分)
13.80 14.32 15.
16.①③
三、解答題(12分×5+14分=74分)
17.解:(1)
2分
……………………4分
∴
的最小正周期為
…………………6分
(2)∵
成等比數(shù)列 ∴
又學(xué).files/image275.gif)
∴
……………………………………4分
又∵
∴
……………………………………………………10分
……………………………………12分
18.解:(1)設(shè)
公差
由
成等比數(shù)列得
…………………1分
∴即
∴
舍去或
…………………………3分
∴
………………………………………………4分
∴
………………………………………………6分
(2) ∵
………………………………………………7分
∴
…①
…………8分
…………②
…………9分
①-②得:學(xué).files/image410.gif)
學(xué).files/image412.gif)
∴
………………………………………………12分
19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,
……………………………………………………4分
(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則
………………………………………………12分
20.解:(1)連結(jié)
為正△
…1分
學(xué).files/image425.gif)
學(xué).files/image426.gif)
學(xué).files/image432.gif)
面學(xué).files/image437.gif)
3分
面
面
學(xué).files/image432.gif)
即點(diǎn)
的位置在線段
的四等分點(diǎn)且靠近
處 ………………………………………6分
(2)過
作
于
,連學(xué).files/image457.gif)
由(1)知
面
(三垂線定理)
∴
為二面角
的平面角……9分
學(xué).files/image470.gif)
學(xué).files/image474.gif)
在
中,學(xué).files/image478.gif)
在
中,學(xué).files/image482.gif)
∴二面角
的大小為
………………………………………12分
(說明:若用空間向量解,請(qǐng)參照給分)
21.解:(1)
由
得
……2分
①當(dāng)
時(shí),
在
內(nèi)是增函數(shù),故無最小值………………………3分
②當(dāng)
時(shí),
在
處取得極小值
………………………5分
學(xué).files/image500.gif)
由
解得:
≤
∴
≤學(xué).files/image511.gif)
…………6分
≥學(xué).files/image519.gif)
(2)由(1)知
在區(qū)間
上均為增函數(shù)
又
,故要在
內(nèi)
為增函數(shù)
學(xué).files/image524.gif)
≤
≥學(xué).files/image531.gif)
必須: 或 ………………………………………10分
≤
≤
∴
≤
或
≥
∴實(shí)數(shù)
的取值范圍是:
…………………12分
22.解:(1)如圖,設(shè)
為橢圓的下焦點(diǎn),連結(jié)學(xué).files/image545.gif)
∴
∵
∴
…3分
∵
∴
………4分
∴
的離心率為學(xué).files/image558.gif)
…………………………………………………………6分
(2)∵
,∴拋物線方程為:
設(shè)點(diǎn)
則
∵
∴
點(diǎn)處拋物線
的切線斜率
……………………………………………………8分
則切線
方程為:
……………………………………………………9分
又∵過點(diǎn)
∴
∴
∴
代入橢圓
方程得:
……………………………………………………11分
∴
≥
………………13分
學(xué).files/image591.gif)
學(xué).files/image595.gif)
當(dāng)且僅當(dāng) 即 上式取等號(hào)
學(xué).files/image599.gif)
∴此時(shí)橢圓的方程為:
………………………………………………14分
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com