題目列表(包括答案和解析)
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè)二次函數(shù)
,對(duì)任意實(shí)數(shù)
,
恒成立;數(shù)列
滿足
.
(1)求函數(shù)
的解析式和值域;
(2)試寫出一個(gè)區(qū)間
,使得當(dāng)
時(shí),數(shù)列
在這個(gè)區(qū)間上是遞增數(shù)列,
并說明理由;
(3)已知
,求:
.
.【必做題】本題滿分10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
由數(shù)字1,2,3,4組成五位數(shù)
,從中任取一個(gè).
(1)求取出的數(shù)滿足條件:“對(duì)任意的正整數(shù)
,至少存在另一個(gè)正整數(shù)
,且
,使得
”的概率;
(2)記
為組成該數(shù)的相同數(shù)字的個(gè)數(shù)的最大值,求
的概率分布列和數(shù)學(xué)期望.
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由
,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
已知函數(shù) ![]()
R).
(Ⅰ)若
,求曲線
在點(diǎn)
處的的切線方程;
(Ⅱ)若
對(duì)任意 ![]()
恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問中,利用當(dāng)
時(shí),
.
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當(dāng)
時(shí),
.
,
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以
恒成立,
故
在
上單調(diào)遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)
時(shí),
在
上恒成立,
故
在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)
時(shí),令
,對(duì)稱軸
,
則
在
上單調(diào)遞增,又
① 當(dāng)
,即
時(shí),
在
上恒成立,
所以
在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)
時(shí),
,
不合題意,舍去 14分
綜上所述:
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com