題目列表(包括答案和解析)
設(shè)f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由
的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
【解析】第一問中,![]()
即
變換分為三步,①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的
倍,得到函數(shù)
的圖象;
③令所得的圖象上各點的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)
的圖象;
第二問中因為
,所以
,則
,又![]()
,
,從而![]()
進而得到結(jié)論。
(Ⅰ) 解:![]()
即
!3分
變換的步驟是:
①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的
倍,得到函數(shù)
的圖象;
③令所得的圖象上各點的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)
的圖象;…………………………………3分
(Ⅱ) 解:因為
,所以
,則
,又![]()
,
,從而
……2分
(1)當(dāng)
時,
;…………2分
(2)當(dāng)
時;![]()
已知數(shù)列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用
關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時,
,命題成立;
②假設(shè)
時,命題成立,即
,
則當(dāng)
時,![]()
![]()
即![]()
即![]()
故當(dāng)
時,命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
設(shè)點
是拋物線![]()
![]()
的焦點,
是拋物線
上的
個不同的點(![]()
).
(1) 當(dāng)
時,試寫出拋物線
上的三個定點
、
、
的坐標(biāo),從而使得
;
(2)當(dāng)
時,若
,
求證:
;
(3) 當(dāng)
時,某同學(xué)對(2)的逆命題,即:
“若
,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù)
,試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因為
,所以
,
故可取![]()
![]()
滿足條件.
(2)設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因為![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時,拋物線
的焦點為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個當(dāng)
時,該逆命題的一個反例.(反例不唯一)
② 設(shè)
,分別過
作
拋物線
的準(zhǔn)線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因為上述表達式與點
的縱坐標(biāo)無關(guān),所以只要將這
點都取在
軸的上方,則它們的縱坐標(biāo)都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質(zhì)上只需構(gòu)造滿足條件且
的一組
個不同的點,均為反例.)
③ 補充條件1:“點
的縱坐標(biāo)
(
)滿足
”,即:
“當(dāng)
時,若
,且點
的縱坐標(biāo)
(
)滿足
,則
”.此命題為真.事實上,設(shè)
,
分別過
作拋物線
準(zhǔn)線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補充條件2:“點
與點![]()
為偶數(shù),
關(guān)于
軸對稱”,即:
“當(dāng)
時,若
,且點
與點![]()
為偶數(shù),
關(guān)于
軸對稱,則
”.此命題為真.(證略)
已知函數(shù)
(
),相鄰兩條對稱軸之間的距離等于
.
(Ⅰ)求
的值;
(Ⅱ)當(dāng)
時,求函數(shù)
的最大值和最小值及相應(yīng)的x值.
【解析】第一問中
因為
,所以
,
.
所以
.所以
![]()
第二問中,![]()
當(dāng)
時,
![]()
所以 當(dāng)
,即
時,![]()
當(dāng)
,即
時,![]()
近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱。為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):
|
|
“廚余垃圾”箱 |
“可回收物”箱 |
“其他垃圾”箱 |
|
廚余垃圾 |
400 |
100 |
100 |
|
可回收物 |
30 |
240 |
30 |
|
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)試估計廚余垃圾投放正確的概率
(Ⅱ)試估計生活垃圾投放錯誤的概率
(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c,的方差
最大時,寫出a,b,c的值(結(jié)論不要求證明),并求此時
的值。
(注:
,其中
為數(shù)據(jù)
的平均數(shù))
【解析】(1)廚余垃圾投放正確的概率約為![]()
(2)設(shè)生活垃圾投放錯誤為事件A,則事件
表示生活垃圾投放正確。事件
的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即
約為
,所以
約為![]()
(3)當(dāng)
時,方差取得最大值,因為
,
所以![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com