題目列表(包括答案和解析)
要證
,只需證
,即需
,即需證
,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立。以上證明運(yùn)用了
A.比較法 B.綜合法 C.分析法 D.反證法
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
![]()
由
,得![]()
當(dāng)x變化時(shí),
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時(shí),取
,有
,故
時(shí)不合題意.當(dāng)
時(shí),令
,即![]()
![]()
令
,得![]()
①當(dāng)
時(shí),
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時(shí),
,對于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時(shí),
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時(shí),不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時(shí),![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
已知數(shù)列
的前
項(xiàng)和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項(xiàng)公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用
關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時(shí),由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時(shí),
,命題成立;
②假設(shè)
時(shí),命題成立,即
,
則當(dāng)
時(shí),![]()
![]()
即![]()
即![]()
故當(dāng)
時(shí),命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
已知函數(shù)
其中
為自然對數(shù)的底數(shù),
.(Ⅰ)設(shè)
,求函數(shù)
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當(dāng)
時(shí),
,
.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進(jìn)而得到最值。
第二問中,∵
,
,
∴原不等式等價(jià)于:
,
即
, 亦即![]()
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)
時(shí),
,
.
當(dāng)
在
上變化時(shí),
,
的變化情況如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
時(shí),
,
.
(Ⅱ)∵
,
,
∴原不等式等價(jià)于:
,
即
, 亦即
.
∴對于任意的
,原不等式恒成立,等價(jià)于
對
恒成立,
∵對于任意的
時(shí),
(當(dāng)且僅當(dāng)
時(shí)取等號).
∴只需
,即
,解之得
或
.
因此,
的取值范圍是![]()
已知
,設(shè)![]()
和
是方程
的兩個(gè)根,不等式
對任意實(shí)數(shù)
恒成立;
函數(shù)
有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當(dāng)a∈[1,2]時(shí),
的最小值為3. 當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即![]()
解得實(shí)數(shù)m的取值范圍是(4,8]
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com