欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(Ⅱ)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖②的位置時(shí).關(guān)系式是否仍然成立?若成立.請(qǐng)證明,若不成立.請(qǐng)說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

25、已知Rt△ABC中,∠ACB=90°,CA=CB,有一個(gè)圓心角為45°,半徑的長(zhǎng)等于CA的扇形CEF繞點(diǎn)C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點(diǎn)M,N.
(Ⅰ)當(dāng)扇形CEF繞點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn)時(shí),如圖1,求證:MN2=AM2+BN2;
(思路點(diǎn)撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對(duì)折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請(qǐng)你完成證明過(guò)程.)
(Ⅱ)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖2的位置時(shí),關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個(gè)圓心角為45°,半徑的長(zhǎng)等于CA的扇形CEF繞點(diǎn)C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點(diǎn)M,N.
(Ⅰ)當(dāng)扇形CEF繞點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn)時(shí),如圖1,求證:MN2=AM2+BN2;
(思路點(diǎn)撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對(duì)折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請(qǐng)你完成證明過(guò)程.)
(Ⅱ)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖2的位置時(shí),關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個(gè)圓心角為45°,半徑的長(zhǎng)等于CA的扇形CEF繞點(diǎn)C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點(diǎn)M,N.
(Ⅰ)當(dāng)扇形CEF繞點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn)時(shí),如圖1,求證:MN2=AM2+BN2
(思路點(diǎn)撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對(duì)折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請(qǐng)你完成證明過(guò)程.)
(Ⅱ)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖2的位置時(shí),關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個(gè)圓心角為45°,半徑的長(zhǎng)等于CA的扇形CEF繞點(diǎn)C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點(diǎn)M,N.
(Ⅰ)當(dāng)扇形CEF繞點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn)時(shí),如圖1,求證:MN2=AM2+BN2
(思路點(diǎn)撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對(duì)折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請(qǐng)你完成證明過(guò)程.)
(Ⅱ)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖2的位置時(shí),關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個(gè)圓心角為45°,半徑的長(zhǎng)等于CA的扇形CEF繞點(diǎn)C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點(diǎn)M,N.
(Ⅰ)當(dāng)扇形CEF繞點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn)時(shí),如圖1,求證:MN2=AM2+BN2
(思路點(diǎn)撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對(duì)折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請(qǐng)你完成證明過(guò)程.)
(Ⅱ)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖2的位置時(shí),關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案