欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(II)求證:(其中e為自然對數(shù)的底數(shù)), 查看更多

 

題目列表(包括答案和解析)

數(shù)學公式,其中f(x)=lnx,且g(e)=數(shù)學公式(e為自然對數(shù)的底數(shù))
(I)求p與q的關系;
(II)若g(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(III)證明:
①f(1+x)≤x?(x>-1);
數(shù)學公式(n∈N,n≥2).

查看答案和解析>>

已知函數(shù)f(x)=-2x2+4x,g(x)=alnx(a>0)
(I)若直線l1交函數(shù)f(x)的圖象于P,Q兩點,與l1平行的直線l2與函數(shù)f(x)的圖象切于點R,求證 P,R,Q三點的橫坐標成等差數(shù)列;
(II)若不等式f(x)≤4x-g(x)恒成立,求實數(shù)a的取值范圍;
(III)求證:+++…+〔其中n≥2,n∈N*,e為自然對數(shù)的底數(shù)).

查看答案和解析>>

(2012•綿陽二模)已知函數(shù)f(x)=-2x2+4x,g(x)=alnx(a>0)
(I)若直線l1交函數(shù)f(x)的圖象于P,Q兩點,與l1平行的直線l2與函數(shù)f(x)的圖象切于點R,求證 P,R,Q三點的橫坐標成等差數(shù)列;
(II)若不等式f(x)≤4x-g(x)恒成立,求實數(shù)a的取值范圍;
(III)求證:
ln2
24
+
ln3
34
+
ln4
44
+…+
lnn
n4
1
e
〔其中n≥2,n∈N*,e為自然對數(shù)的底數(shù)).

查看答案和解析>>

(14分)已知數(shù)列為方向向量的直線上,(I)求數(shù)列的通項公式;(II)求證:(其中e為自然對數(shù)的底數(shù));

(III)記

求證:

查看答案和解析>>

己知函數(shù)f(x)=數(shù)學公式-1(其中a是不為0的實數(shù)),g(x)=lnx,設F(x)=f(x)+g(x).
(I )判斷函數(shù)F(x)在(0,3]上的單調(diào)性;
(II)已知s,t為正實數(shù),求證:ttex≥stet(其中e為自然對數(shù)的底數(shù));
(III)是否存在實數(shù)m,使得函數(shù)y=f(數(shù)學公式)+2m的圖象與函數(shù)y=g(x2+1)的圖象恰好有四個不同的交點?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

  • <mark id="rmkpl"></mark>
      •       

              

                      3分

        18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

               可建立如圖所示的空間直角坐標系

               則       2分

               由  1分

              

              

               又平面BDF,

               平面BDF。       2分

           (Ⅱ)解:設異面直線CM與FD所成角的大小為

              

              

               。

               即異面直線CM與FD所成角的大小為   3分

           (III)解:平面ADF,

               平面ADF的法向量為      1分

               設平面BDF的法向量為

               由

                    1分

              

                  1分

               由圖可知二面角A―DF―B的大小為   1分

        19.解:(I)設該小組中有n個女生,根據(jù)題意,得

              

               解得n=6,n=4(舍去)

               該小組中有6個女生。        5分

           (II)由題意,的取值為0,1,2,3。      1分

              

              

              

                     4分

               的分布列為:

        0

        1

        2

        3

        P

               …………1分

                3分

        20.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

                       3分

                    1分

           (II)由題意,知直線AB的斜率必存在。

               設直線AB的方程為

               由,

               顯然

              

                     2分

               由雙曲線和ABCD的對稱性,可知A與C、B與D關于原點對稱。

               而    1分

                   

               點O到直線的距離   2分

              

              

              

                       1分

        21.解:(I)

              

                      3分

           (Ⅱ)     1分

              

               上單調(diào)遞增;

               又當

               上單調(diào)遞減。      1分

               只能為的單調(diào)遞減區(qū)間,

              

               的最小值為0。

           (III)

              

              

               于是函數(shù)是否存在極值點轉化為對方程內(nèi)根的討論。

               而

                    1分

               ①當

               此時有且只有一個實根

                                   

               存在極小值點     1分

               ②當

               當單調(diào)遞減;

               當單調(diào)遞增。

                     1分

               ③當

               此時有兩個不等實根

              

               單調(diào)遞增,

               單調(diào)遞減,

               當單調(diào)遞增,

              

               存在極小值點      1分

               綜上所述,對時,

               存在極小值點

               當    

               當存在極小值點

               存在極大值點      1分

           (注:本小題可用二次方程根的分布求解。)

        22.(I)解:由題意,      1分

                     1

               為首項,為公比的等比數(shù)列。

                         1分

                    1分

           (Ⅱ)證明:

              

              

               構造輔助函數(shù)

              

               單調(diào)遞增,

              

               令

               則

              

                       4分

           (III)證明:

              

              

              

               時,

              

              

               (當且僅當n=1時取等號)。      3分

               另一方面,當時,

              

              

              

              

              

              

               (當且僅當時取等號)。

               (當且僅當時取等號)。

               綜上所述,有      3分

         

        • <u id="rmkpl"></u>